首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the three major acute-phase proteins alpha 2-macroglobulin, cysteine proteinase inhibitor and alpha 1-antitrypsin by recombinant human interleukin-1 beta, recombinant human interleukin-6 and recombinant human tumor necrosis factor alpha was studied in rat hepatocyte primary cultures. Synthesis and secretion of the acute-phase proteins was measured after labeling with [35S]methionine and immunoprecipitation. Incubation of hepatocytes with interleukin-6 led to dose-dependent and time-dependent changes in the synthesis of the three major acute-phase proteins and albumin, similar to those occurring in vivo during experimental inflammation. alpha 2-Macroglobulin and cysteine proteinase inhibitor synthesis was induced 54-fold and 8-fold, respectively, 24 h after the addition of 100 units/ml interleukin-6. At the same time synthesis of the negative acute-phase protein albumin was reduced to 30% of controls. Half-maximal effects were achieved with 4 units interleukin-6/ml. Interleukin-1 beta had only a partial effect on the regulation of the four patients studied: only a twofold stimulation of alpha 2-macroglobulin and a 60% reduction of albumin synthesis were observed. Tumor necrosis factor alpha did not alter the synthesis of acute-phase proteins. The stimulation of alpha 2-macroglobulin and cysteine proteinase inhibitor synthesis by interleukin-6 was inhibited by interleukin-1 beta in a dose-dependent manner. In pulse-chase experiments the effect of interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha on the secretion of acute-phase proteins was examined. Interleukin-6 markedly accelerated the secretion of total proteins and alpha 2-macroglobulin, whereas the secretion of cysteine proteinase inhibitor, alpha 1-antitrypsin and albumin was not affected. The inhibition of N-glycosylation by tunicamycin abolished the effect of interleukin-6 on the secretion of alpha 2-macroglobulin, indicating a possible role of interleukin-6 on N-glycosylation.  相似文献   

2.
The induction of alpha 1-acid glycoprotein mRNA by recombinant murine interleukin-1, recombinant human interleukin-1 alpha, and recombinant human interleukin-1 beta has been studied in the rat hepatoma cell line Fao. Whereas the stimulatory capacities of recombinant human interleukin-1 alpha and recombinant murine interleukin-1 were almost identical, the concentrations of recombinant human interleukin-1 beta needed for half-maximal induction of alpha 1-acid glycoprotein mRNA were lower by three orders of magnitude. A 60-fold increase in alpha 1-acid glycoprotein mRNA levels was observed 18 h after the addition of recombinant interleukin-1 beta. In parallel albumin mRNA levels decreased to about 30%. The alpha 1-acid glycoprotein mRNA induction was strictly dependent on the presence of dexamethasone. For a full stimulation dexamethasone concentrations of greater than 10(-7) M were needed, whereas concentrations of less than 10(-12) M were ineffective. The increase in alpha 1-acid glycoprotein mRNA after recombinant human interleukin-1 beta was followed by a 36-fold stimulation in alpha 1-acid glycoprotein synthesis and secretion. When protein synthesis was blocked by either cycloheximide, puromycin, or emetine, the induction of alpha 1-acid glycoprotein mRNA by recombinant human interleukin-1 beta was impaired suggesting the involvement of a short-lived protein in the induction of alpha 1-acid glycoprotein mRNA.  相似文献   

3.
Group IIa phospholipase A(2) (GIIa PLA(2)) is released by some cells in response to interleukin-1beta. The purpose of this study was to determine whether interleukin-1beta would stimulate the synthesis and release of GIIa PLA(2) from cardiomyocytes, and to define the role of p38 MAPK and cytosolic PLA(2) in the regulation of this process. Whereas GIIa PLA(2) mRNA was not identified in untreated cells, exposure to interleukin-1beta resulted in the sustained expression of GIIa PLA(2) mRNA. Interleukin-1beta also stimulated a progressive increase in cellular and extracellular GIIa PLA(2) protein levels and increased extracellular PLA(2) activity 70-fold. In addition, interleukin-1beta stimulated the p38 MAPK-dependent activation of the downstream MAPK-activated protein kinase, MAPKAP-K2. Treatment with the p38 MAPK inhibitor, SB202190, decreased interleukin-1beta stimulated MAPKAP-K2 activity, GIIa PLA(2) mRNA expression, GIIa PLA(2) protein synthesis, and the release of extracellular PLA(2) activity. Infection with an adenovirus encoding a constitutively active form of MKK6, MKK6(Glu), which selectively phosphorylates p38 MAPK, induced cellular GIIa PLA(2) protein synthesis and the release of GIIa PLA(2) and increased extracellular PLA(2) activity 3-fold. In contrast, infection with an adenovirus encoding a phosphorylation-resistant MKK6, MKK6(A), did not result in GIIa PLA(2) protein synthesis or release by unstimulated cardiomyocytes. In addition, infection with an adenovirus encoding MKK6(A) abrogated GIIa PLA(2) protein synthesis and release by interleukin-1beta-stimulated cells. These results provide direct evidence that p38 MAPK activation was necessary for interleukin-1beta-induced synthesis and release of GIIa PLA(2) by cardiomyocytes.  相似文献   

4.
The three monokines interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha (TNF alpha), and interleukin-6 (IL-6) modulate acute phase plasma protein synthesis in adult human hepatocytes. Only IL-6 stimulates the synthesis of the full spectrum of acute phase proteins as seen in inflammatory states in humans, i.e. synthesis and secretion of C-reactive protein, serum amyloid A, fibrinogen, alpha 1-antitrypsin, alpha 1-antichymotrypsin and haptoglobin are increased while albumin, transferrin and fibronectin are decreased. IL-1 beta as well as TNF alpha, although having a moderate effect on the positive acute phase proteins and inhibiting the synthesis of fibrinogen, albumin and transferrin, fail to induce serum amyloid A and C-reactive protein. These data suggest that IL-6 plays the key role in the regulation of acute phase protein synthesis in human hepatocytes.  相似文献   

5.
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure.  相似文献   

6.
Regulation of rabbit acute phase protein biosynthesis by monokines.   总被引:4,自引:0,他引:4       下载免费PDF全文
We defined the acute phase behaviour of a number of rabbit plasma proteins in studies (in vivo) and studied the effects of monokine preparations on their synthesis by rabbit primary hepatocyte cultures. Following turpentine injection, increased serum levels of C-reactive protein, serum amyloid A protein, haptoglobin, ceruloplasmin, and decreased concentrations of albumin were observed. In contrast to what is observed in man, concentrations of alpha 2-macroglobulin and transferrin were increased. Co-culture of primary hepatocyte cultures with lipopolysaccharide-activated human peripheral blood monocytes or incubation with conditioned medium prepared from lipopolysaccharide-activated human or rabbit monocytes resulted in dose-dependent induction of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and depression of albumin synthesis, while C-reactive protein synthesis and mRNA levels remained unchanged. A variety of interleukin-1 preparations induced dose-dependent increases in the synthesis and secretion of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and decreased albumin synthesis. Human recombinant tumour necrosis factor (cachectin) induced a dose-dependent increase in synthesis of haptoglobin and ceruloplasmin. In general, human interleukin-1 was more potent than mouse interleukin-1 and tumour necrosis factor. None of the monokines we studied had an effect on C-reactive protein synthesis or mRNA levels. These data confirm that C-reactive protein, serum amyloid A, haptoglobin and ceruloplasmin display acute phase behaviour in the rabbit, and demonstrate that, in contrast to their behaviour in man, alpha 2M and transferrin are positive acute phase proteins in this species. While both interleukin-1 and tumour necrosis factor regulate biosynthesis of a number of these acute phase proteins in rabbit primary hepatocyte cultures, neither of these monokines induced C-reactive protein synthesis. Comparison of these findings with those in human hepatoma cell lines, in which interleukin-1 does not induce serum amyloid A synthesis, suggests that the effect of interleukin-1 on serum amyloid A synthesis may be indirect.  相似文献   

7.
Increased concentrations of interleukin-6 (IL-6) have been found in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and crystal-related joint diseases. It is therefore of great interest to identify the cells responsible for the production of IL-6, and to investigate whether IL-6 plays a role in the pathogenesis of degenerative or inflammatory joint diseases. Here we show that human interleukin-1 beta (IL-1 beta) induces IL-6 synthesis and secretion in differentiated human chondrocytes. In organ cultures resembling closely the in vivo system 10(6) chondrocytes incubated with 100 units of interleukin-1 beta per ml of medium led to the release of 6 X 10(3) units of IL-6 within 24 h. Chondrocytes cultured in agarose or as monolayers similarly incubated with IL-1 beta produced even higher amounts of IL-6: 70 X 10(3) units per 10(6) cells within 24 h. The induction of IL-6 synthesis by IL-1 beta was also shown at the mRNA level. IL-6 secreted by stimulated chondrocytes showed heterogeneity upon Western blot analysis.  相似文献   

8.
9.
Because a number of different cytokines have been reported to regulate the synthesis of human, murine, and rat acute phase proteins (APP), we studied the effect of cytokines on production of several major human APP in a single system, the human hepatoma cell line Hep 3B. Conditioned medium (CM) prepared from human blood monocytes activated with LPS in the presence of dexamethasone led to substantial induction of serum amyloid A (SAA) and C-reactive protein (CRP) synthesis whereas the defined cytokines IL-1 beta, TNF alpha, and medium from a human keratinocyte cell line (COLO-16), containing hepatocyte-stimulating factor activity, failed to induce these two major APP. Induction of SAA and CRP was accompanied by an increase in concentration of their specific mRNA. Size fractionation of CM from activated monocytes by fast protein liquid chromatography indicated that SAA- and CRP-inducing activity eluted as a single peak with a Mr of approximately 18 kDa. alpha 1-Antitrypsin, which also failed to respond to IL-1 beta or TNF alpha, was induced by both CM and medium from COLO-16 cells. The induction of AT by CM was accompanied by an increase in specific mRNA. Induction of ceruloplasmin and alpha 1-antichymotrypsin and decrease in the synthesis of albumin was achieved by both CM and IL-1 beta. Ceruloplasmin and albumin responded in a comparable fashion to both TNF alpha and medium from COLO-16 cells; the response of ACT to these cytokines was not evaluated. These results indicate that human SAA and CRP are induced in Hep 3B cells by products of activated monocytes but not by IL-1 beta, TNF-alpha, or some hepatocyte-stimulating factor preparations and that a group of heterogeneous mechanisms are involved in the induction of the various human APP.  相似文献   

10.
11.
12.
Conditioned medium from human monocyte-macrophages incubated under various conditions was tested for its ability to stimulate fibrinogen mRNA levels in the hepatoma cell line HepG2. Recombinant human interleukin-6 (IL-6) stimulated fibrinogen mRNA levels 4.4-fold over control levels; this response was blocked by an anti-IL-6 antibody. Conditioned medium from 3-day-cultured monocyte-macrophages produced a slight stimulation of fibrinogen synthesis in HepG2 cells which was enhanced when the monocyte-macrophages had been treated with lipopolysaccharide (LPS). This stimulation was blocked by the anti IL-6 antibody. The cytokines, interleukin-1 (IL-1) and tumour necrosis factor (TNF) were also detected in the conditioned medium from the 3-day-cultured monocyte-macrophages. Monocyte-macrophages were cultured for 17 days and then incubated with acetylated low density lipoprotein (AcLDL) for 48 h. Such cells were 'foamy' in appearance and showed a 4-fold increase in apoE mRNA and a 10 to 50-fold increase in apoE secretion. This increase in apoE production was suppressed by almost a third when cells were coincubated with AcLDL and LPS. Conditioned medium from these 17-day-cultured AcLDL-treated human monocyte-macrophages did not stimulate fibrinogen mRNA synthesis in HepG2 cells, nor did the conditioned medium contain detectable levels of cytokines. These results suggest that cytokine production from foam cells in the atherosclerotic lesion is unlikely to be a major contributing factor in determining the elevated fibrinogen levels seen in the plasma of patients with IHD.  相似文献   

13.
Several well-differentiated human hepatoma cell lines (HepG2, Hep3B) have been used to identify factors which regulate hepatic gene expression during the host response to inflammation/tissue injury (acute phase response). Studies in these cell lines, as well as in primary cultures of rat, rabbit, and mouse hepatocytes, have demonstrated that interleukin-1 beta (IL-1 beta), tumor necrosis factor (TNF-alpha), and interferon-beta 2 (IFN-beta 2) each mediate changes in expression of several hepatic acute phase genes. In this study we identify a subclone of the HepG2 cell line in which there is a selective defect in IL-1 beta-mediated acute phase gene expression. Recombinant human IL-1 beta mediates an increase in synthesis of the positive acute phase complement protein factor B and a decrease in synthesis of negative acute phase protein albumin in the parent uncloned HepG2 cell line (HG2Y), but not in the subclone HG2N. Recombinant human IFN-beta 2 and TNF-alpha, however, regulate acute phase protein synthesis in the subclone HG2N; i.e. IFN-beta 2 and TNF-alpha increase synthesis of factor B and decrease synthesis of albumin in both HG2Y and HG2N cells. Equilibrium binding analysis with 125I-rIL-1 beta at 4 degrees C showed that both HG2N and HG2Y cells bind IL-1 beta specifically and saturably. HG2N and HG2Y possess 3.8 and 4.0 x 10(3) plasma membrane receptors/cell with affinities of 0.96 and 1.07 x 10(-9) M, respectively. Thus, the defect in this subclone of the HepG2 cell line is likely to involve the signal transduction pathway for the biological activity of IL-1 beta and will be useful in elucidation of this signal transduction pathway.  相似文献   

14.
The lactose-assimilating yeast, Kluyveromyces lactis, has been developed as a microbial host for the synthesis and secretion of human proteins. Here, we report the use of multi-copy vectors based on the 2 mu-like plasmid pKD1 from Kluyveromyces drosophilarum [Chen et al., Nucleic Acids Res. 14 (1986) 4471-4481] for the secretion of recombinant human interleukin-1 beta (reIL-1 beta). High levels of reIL-1 beta were secreted into the growth medium when the structural gene was fused in-frame to a synthetic secretion signal derived from the 'pre'-region of the K. lactis killer toxin. N-terminal sequencing of the excreted protein showed highly efficient (greater than 95%) maturation of the signal sequence. Synthesis as prepro-IL-1 beta, the 'pro'-sequence being derived from the human serum albumin-encoding gene, resulted in equally efficient secretion of mature IL-1 beta. Cytoplasmic production of Met-IL-1 beta, without a secretion signal, was found to be toxic to K. lactis. As in Saccharomyces cerevisiae [Baldari et al., EMBO J. 6 (1987) 229-234], but unlike native human IL-1 beta, K. lactis reIL-1 beta is glycosylated. This glycosylation led to a 95% loss of its biological activity. Removal of the carbohydrate chains by endo-beta-N-acetyl-glucosamidase H treatment fully restored the biological activity. A modified form of IL-1 beta (Asn7----Gln7), in which the unique site for Asn-linked glycosylation was deleted, exhibited the same biological activity as native IL-1 beta. The level of secretion of mature recombinant IL-1 beta ws glycosylation-independent.  相似文献   

15.
Long-term supplementation of branched-chain amino acids (BCAA) improves hypoalbuminemia in patients with cirrhosis. Our previous findings have suggested that the binding of polypyrimidine-tract-binding protein (PTB) to rat albumin mRNA attenuates its translation. The aim of the present study was to investigate the role of PTB in the regulation of albumin synthesis by BCAA in human hepatoma cells. HepG2 cells were cultured in a medium containing no amino acids (AA-free medium), a medium containing only 1 amino acid (a BCAA: valine, leucine or isoleucine) or a medium containing all 20 amino acids (AA-complete medium). HepG2 cells cultured in AA-complete medium secreted much more albumin than cells cultured in AA-free medium, with no difference in albumin mRNA levels. In cells cultured in AA-free medium, nuclear export of PTB was observed, and the level of the albumin mRNA-PTB complex was greater than in cells cultured in AA-complete medium. Addition of amino acids stimulated nuclear import of PTB. However, addition of amino acids with rapamycin inhibited the nuclear import of PTB. The addition of leucine, but not of valine or isoleucine, to AA-free medium increased albumin secretion and stimulated the nuclear import of PTB. These data indicate that the mammalian target of rapamycin is involved in the regulation of PTB localization and that leucine promotes albumin synthesis by inhibiting the formation of the albumin mRNA-PTB complex.  相似文献   

16.
In this work deviation of liver metabolism by cytokines, especially recombinant human interleukin 1-alpha (rhIL1-alpha), was investigated. Administration of rhIL1-alpha or recombinant human tumor necrosis factor (rhTNF/cachectin) to normal mice resulted in rapid, dose-dependent induction of high liver ornithine decarboxylase (ODC) activity. The effects of these cytokines on liver ODC were not indirect effects mediated by eicosanoids. The induction of liver ODC by rhIL1-alpha was at least partly a direct effect on hepatocytes, and was due to increase in de novo synthesis of the enzyme protein after increase in ODC mRNA. No specific protein was required for increase in the level of ODC-mRNA. On IL1 treatment, actinomycin D caused superinduction of liver ODC, which was at least partly due to increased stability of the ODC enzyme, because actinomycin D doubled the apparent half-life (from 50 to 95 min). Daily administration of 2 x 10(3) U of rhIL1-alpha to mice for 3 days also caused decrease in the level of the differentiated type of pyruvate kinase isozyme (PK-L) and marked increase in that of the prototype isozyme (PK-M2) in the liver, but did not cause significant change in the isozyme patterns of the kidney, thymus, and spleen. RhIL1-alpha also induced hypertrophy of the spleen. These results indicate that rhIL1-alpha causes metabolic deviation of the liver similar to that in tumor-bearing hosts.  相似文献   

17.
Human plasma protein alpha 2-HS-glycoprotein (AHSG) is composed of two polypeptide chains, A and B, encoded by a single mRNA. Southern blot analysis of mouse x human somatic cell hybrids has mapped the AHSG gene to human chromosome 3 in the region 3q21----qter (Lee et al., 1987). Using a recombinant plasmid containing a 1,538 bp insert spanning the entire AHSG coding region, AHSG was localized to chromosomal bands 3q27----q29 by in situ hybridization.  相似文献   

18.
Human blood monocytes normally express the interleukin-6 receptor. Treatment of cultured monocytes with endotoxin, interleukin-1 beta, or interleukin-6 results in a decrease in interleukin-6 receptor mRNA levels. Glucocorticoids aso cause a drop in monocytic interleukin-6 receptor mRNA levels. We also found interleukin-6 receptor expression in cultured human hepatocytes, but in contrast to monocytes, where interleukin-6 receptor mRNA is presented by the ligand and by interleukin-1, treatment of hepatocytes with interleukin-6 or interleukin-1 resulted in increased interleukin-6 receptor mRNA levels. Induction of interleukin-6 receptor mRNA in hepatocytes was less pronounced when glucocorticoids were omitted from the culture medium. We conclude that during noninflammatory homeostasis, blood monocytes are involved in binding of trace amounts of circulating interleukin-6. During inflammatory events, the main target of interleukin-6 may be changed from the monocytic population not only to activated B-cells, but also to the hepatocytes.  相似文献   

19.
20.
Prostaglandin E2 Induces Interleukin-6 Synthesis in Human Astrocytoma Cells   总被引:1,自引:1,他引:0  
Abstract: Prostaglandins (PGs) and cytokines, such as interleukin-1 (IL-1) and interleukin-6 (IL-6), have been implicated in the etiopathology of various inflammatory and degenerative disorders, including Alzheimer's disease (AD) and prion diseases. Nonsteroidal antiinflammatory drugs (NSAIDs), potent inhibitors of PG synthesis, appear to be beneficial in the treatment of AD. To assess whether PGs are able to induce IL-6 synthesis in cells of the CNS, IL-6 mRNA and protein syntheses were measured in a human astrocytoma cell line after stimulation with different PGs. PGE1 and PGE2, but not PGD2 and PGF, led to a rapid and transient induction of IL-6 mRNA, followed by IL-6 protein synthesis. Furthermore, PGE2 potentiated IL-1β-induced IL-6 mRNA synthesis. These results are discussed with respect to the participation of PGs in neurodegenerative diseases (and its inhibition by NSAIDs) by affecting cytokine expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号