首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transitions of aqueous dispersions of a number of synthetic phosphatidylethanolamines containing linear saturated, branched chain, and alicyclic fatty acyl chains of varying length were studied by differential scanning calorimetry, 31P nuclear magnetic resonance spectroscopy, and X-ray diffraction. For any given homologous series of phosphatidylethanolamines containing a single chemical class of fatty acids, the lamellar gel/liquid-crystalline phase transition temperature increases and the lamellar liquid-crystalline/reversed hexagonal phase transition temperature decreases with increases in hydrocarbon chain length. For a series of phosphatidylethanolamines of the same hydrocarbon chain length but with different chemical structures, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary markedly and in the same direction. In particular, at comparable effective hydrocarbon chain lengths, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary in parallel, such that the temperature difference between these two phase transitions is nearly constant. Moreover, at comparable effective acyl chain lengths, the d spacings of the lamellar liquid-crystalline phases and of the inverted hexagonal phases are all similar, implying that the thickness of the phosphatidylethanolamine bilayers at the onset of the lamellar liquid-crystalline/reversed hexagonal phase transition and the diameter of the water-filled cylinders formed at the completion of this phase transition are comparable and independent of the chemical structure of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines was investigated by differential scanning calorimetry, 31P-nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Upon heating, aqueous dispersions of dried samples of the short- and medium-chain homologues (n < or = 17) exhibit single, highly energetic transitions from a dry, crystalline form to the fully hydrated, liquid-crystalline bilayer at temperatures higher than the lamellar gel-liquid-crystalline phase transition exhibited by fully hydrated samples. In contrast, the longer chain homologues (n > or = 18) first exhibit a transition from a dehydrated solid form to the hydrated L beta gel phase followed by the gel-liquid-crystalline phase transition normally observed with fully hydrated samples. The fully hydrated, aqueous dispersions of these lipids all exhibit reversible, fairly energetic gel-liquid-crystalline transitions at temperatures that are significantly higher than those of the corresponding phosphatidylcholines. In addition, at still higher temperatures, the longer chain members of this series (n > or = 16) exhibit weakly energetic transitions from the lamellar phase to an inverted nonlamellar phase. Upon appropriate incubation at low temperatures, aqueous dispersions of the shorter chain members of this homologous series (n < or = 16) form a highly ordered crystal-like phase that, upon heating, converts directly to the liquid-crystalline phase at the same temperature as do the aqueous dispersions of the dried lipid. The spectroscopic data indicate that unlike the n-saturated diacyl phosphatidylcholines, the stable crystal-like phases of this series of phosphatidylethanolamines describe an isostructural series in which the hydrocarbon chains are packed in an orthorhombic subcell and the headgroup and polar/apolar interfacial regions of the bilayer are effectively immobilized and substantially dehydrated. Our results suggest that many of the differences between the properties of these phosphatidylethanolamine bilayers and their phosphatidylcholine counterparts can be rationalized on the basis of stronger intermolecular interactions in the headgroup and interfacial regions of the phosphatidylethanolamine bilayers. These are probably the result of differences in the hydration and hydrogen bonding interactions involving the phosphorylethanolamine headgroup and moieties in the polar/apolar interfacial regions of phosphatidylethanolamine bilayers.  相似文献   

3.
Differential scanning calorimetry, x-ray diffraction, and infrared and (31)P-nuclear magnetic resonance ((31)P-NMR) spectroscopy were used to examine the thermotropic phase behavior and organization of cationic model membranes composed of the P-O-ethyl esters of a homologous series of n-saturated 1,2-diacyl phosphatidylcholines (Et-PCs). Differential scanning calorimetry studies indicate that on heating, these lipids exhibit single highly energetic and cooperative endothermic transitions whose temperatures and enthalpies are higher than those of the corresponding phosphatidylcholines (PCs). Upon cooling, these Et-PCs exhibit two exothermic transitions at temperatures slightly below the single endotherm observed upon heating. These cooling exotherms have both been assigned to transitions between the liquid-crystalline and gel phases of these lipids by x-ray diffraction. The x-ray diffraction data also show that unlike the parent PCs, the chain-melting phase transition of these Et-PCs involves a direct transformation of a chain-interdigitated gel phase to the lamellar liquid-crystalline phase for the homologous series of n > or = 14. Our (31)P-NMR spectroscopic studies indicate that the rates of phosphate headgroup reorientation in both gel and liquid-crystalline phases of these lipids are comparable to those of the corresponding PC bilayers. However, the shape of the (31)P-NMR spectra observed in the interdigitated gel phase indicates that phosphate headgroup reorientation is subject to constraints that are not encountered in the non-interdigitated gel phases of parent PCs. The infrared spectroscopic data indicate that the Et-PCs adopt a very compact form of hydrocarbon chain packing in the interdigitated gel phase and that the polar/apolar interfacial regions of these bilayers are less hydrated than those of corresponding PC bilayers in both the gel and liquid-crystalline phases. Our results indicate that esterification of PC phosphate headgroups results in many alterations of bilayer physical properties aside from the endowment of a positively charged surface. This fact should be considered in assessing the interactions of these compounds with naturally occurring lipids and with other biological materials.  相似文献   

4.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(10):2431-2439
The thermotropic phase behavior of aqueous dispersions of phosphatidylcholines containing one of a series of methyl iso-branched fatty acyl chains was studied by differential scanning calorimetry. These compounds exhibit a complex phase behavior on heating which includes two endothermic events, a gel/gel transition, involving a molecular packing rearrangement between two gel-state forms, and a gel/liquid-crystalline phase transition, involving the melting of the hydrocarbon chains. The gel to liquid-crystalline transition is a relatively fast, highly cooperative process which exhibits a lower transition temperature and enthalpy than do the chain-melting transitions of saturated straight-chain phosphatidylcholines of similar acyl chain length. In addition, the gel to liquid-crystalline phase transition temperature is relatively insensitive to the composition of the aqueous phase. In contrast, the gel/gel transition is a slow process of lower cooperativity than the gel/liquid-crystalline phase transition and is sensitive to the composition of the bulk aqueous phase. The gel/gel transitions of the methyl iso-branched phosphatidylcholines have very different thermodynamic properties and depend in a different way on hydrocarbon chain length than do either the "subtransitions" or the "pretransitions" observed with linear saturated phosphatidylcholines. The gel/gel and gel/liquid-crystalline transitions are apparently concomitant for the shorter chain iso-branched phosphatidylcholines but diverge on the temperature scale with increasing chain length, with a pronounced odd/even alternation of the characteristic temperatures of the gel/gel transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The cell-wall-less bacterium Acholeplasma laidlawii A-EF22 synthesizes eight glycerolipids. Some of them form lamellar phases, whereas others are able to form normal or reversed nonlamellar phases. In this study we examined the phase properties of total lipid extracts with limiting average acyl chain lengths of 15 and 19 carbon atoms. The temperature at which these extracts formed reversed hexagonal (HII) phases differed by 5-10 degreesC when the water contents were 20-30 wt%. Thus the cells adjust the ratio between lamellar-forming and nonlamellar-forming lipids to the acyl chain lengths. Because short acyl chains generally increase the potential of lipids to form bilayers, it was judged interesting to determine which of the A. laidlawii A lipids are able to form reversed nonlamellar phases with short acyl chains. The two candidates with this ability are monoacyldiglucosyldiacylglycerol (MADGlcDAG) and monoglucosyldiacylglycerol. The average acyl chain lengths were 14.7 and 15.1 carbon atoms, and the degrees of acyl chain unsaturation were 32 and 46 mol%, respectively. The only liquid crystalline phase formed by MADGlcDAG is an HII phase. Monoglucosyldiacylglycerol forms reversed cubic (Ia3d) and HII phases at high temperatures. Thus, even when the organism is grown with short fatty acids, it synthesizes two lipids that have the capacity to maintain the nonlamellar tendency of the lipid bilayer. MADGlcDAG in particular contributes very powerfully to this tendency.  相似文献   

6.
The lamellar/nonlamellar phase preferences of lipid model membranes composed of mixtures of several cationic lipids with various zwitterionic and anionic phospholipids were examined by a combination of differential scanning calorimetry and (31)P NMR spectroscopy. All of the cationic lipids utilized in this study form only lamellar phases in isolation. Mixtures of these cationic lipids with zwitterionic strongly lamellar phase-preferring lipids such as phosphatidylcholine form only the lamellar liquid-crystalline phase even at high temperatures, as expected. Moreover, mixtures of these cationic lipids with strongly nonlamellar phase-preferring zwitterionic lipids such as phosphatidylethanolamine exhibit a markedly reduced propensity to form inverted nonlamellar phases, again as expected. However, when mixed with anionic lipids such as phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid, a marked enhancement of nonlamellar phase-forming propensity occurs, despite the fact both components of the mixture are nominally lamellar phase-preferring. An examination of the lamellar/nonlamellar phase transition temperatures and the nature of the nonlamellar phases formed, as a function of temperature and of the composition of the mixture, indicates that the propensity to form inverted nonlamellar phases is maximal in mixtures where the mean surface charge of the membrane surface approaches neutrality and decreases markedly with increases in the density of positive or negative charge at the membrane surface. Moreover, the onset temperatures of the reversed hexagonal phase rise more steeply than do those of the inverted cubic phase as the ratio of cationic and anionic lipids is varied, suggesting that the formation of inverted hexagonal phases is more sensitive to this surface charge effect. These results indicate that surface charge per se is a significant and effective modulator of the lamellar/nonlamellar phase preferences of membrane lipids and that charged group interactions at membrane surfaces may have a major role in regulating this particular membrane property.  相似文献   

7.
Twelve saturated mixed-chain phosphatidylcholines have been identified for which the thermotropic phase behavior observed upon cooling from the L alpha phase is dependent upon the thermal history of the sample in the gel phase. If fully hydrated samples of these lipids are cooled and soon thereafter examined by differential scanning calorimetry, one observes a single highly cooperative endotherm (the chain-melting phase transition) upon heating, and on subsequent cooling, a single exotherm that may occur at temperatures as much as 4-6 degrees C below that of the single endotherm observed upon heating. In contrast, if the samples are incubated in the gel state at low temperatures for prolonged periods of time, one observes a single heating endotherm as before, but two sharp exotherms upon cooling. The latter transitions occur at temperatures close to that of the single endotherm observed upon heating and the single cooling exotherm observed prior to incubation in the gel state. The combined enthalpy of the two cooling exotherms is the same as that of the single heating endotherm or the single cooling exotherm initially observed. Infrared spectroscopic and X-ray diffraction studies indicate that the structural conversions characteristic of liquid-crystalline/gel phase transitions occur at both of those cooling exotherms. Of the 12 lipids that exhibit this unusual behavior, nine fulfill the previously defined structural requirements for the formation of the so-called mixed-interdigitated gel phase, and there is evidence in the literature that one of the three remaining lipids also forms such a structure. Infrared spectroscopic studies of the other two lipids indicate that their gel phases exhibit spectroscopic features that closely resemble those of lipids that meet the previously defined structural criteria for the formation of mixed-interdigitated gel phases and that differ markedly from those of both saturated symmetric-chain and saturated mixed-chain phosphatidylcholines that do not normally form mixed-interdigitated gel phases. Also, electron density reconstructions based on small-angle X-ray diffraction studies of the gel phases of those two lipids indicate that the thickness of their gel phase bilayers is consistent with their forming mixed-interdigitated gel phases. Thus the unusual thermotropic phase behavior described here may be a general characteristic of phosphatidylcholines that form mixed-interdigitated gel phases. This unusual behavior is not associated with any major change in any of several physical properties of these lipid bilayers but may arise from an alteration of the size and/or structure of microdomains present in the liquid-crystalline phase.  相似文献   

8.
The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates unannealed samples of these lipids exhibit a strongly energetic transition, which has been identified as a lamellar gel/liquid crystalline (L beta/L alpha) phase transition (short- and medium-chain compounds) or a lamellar gel to inverted hexagonal (L beta/HII) phase transition (long-chain compounds) by X-ray diffraction studies (Sen et al., 1990). At still higher temperatures, some of the lipids that form lamellar liquid-crystalline phases exhibit an additional transition, which has been identified as a transition to an inverted nonbilayer phase by X-ray diffraction studies. The lamellar gel phase formed on initial cooling of these lipids is a metastable structure, which, when annealed under appropriate conditions, transforms to a more stable lamellar gel phase, which has been identified as a poorly hydrated crystal-like phase with tilted acyl chains by X-ray diffraction measurements (Sen et al., 1990). With the exception of the di-19:0 homologue, the crystalline phases of these lipids are stable to temperatures higher than those at which their L beta phases melt and, as a result, they convert directly to L alpha or HII phases on heating. Our results indicate that the length of the acyl chain affects both the kinetic and thermodynamic properties of the crystalline phases of these lipids as well as the type of nonbilayer phase that they form. Moreover, when compared with the beta-anomers, these alpha-D-glucosyl diacylglycerols are more prone to form ordered crystalline gel phases at low temperatures and are somewhat less prone to form nonbilayer phases at elevated temperatures. Thus the physical properties of glucolipids (and possibly all glycolipids) are very sensitive to the nature of the anomeric linkage between the sugar headgroup and the glycerol backbone of the lipid molecule. We suggest that this is, in part, due to a change in orientation of the glucopyranosyl ring relative to the bilayer surface, which in turn affects the way(s) in which the sugar headgroups interact with each other and with water.  相似文献   

9.
We have studied the biosynthetic regulation of the membrane lipid polar headgroup distribution in Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin to test whether this organism has the ability to coherently regulate the lamellar/nonlamellar phase propensity of its membrane lipids. The addition of various single normal growth-supporting exogenous fatty acids to such cell cultures produces fatty acid-homogeneous cells in which the hydrocarbon chain length and structure of the fatty acyl chains of the membrane lipids can be independently varied. Moreover, in analyzing our results, we consider the fact that the individual membrane lipid classes of this organism can form either normal micellar, lamellar, or reversed cubic or hexagonal phases in isolation (Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13818-13824). When A. laidlawii cells are highly enriched in one of a homologous series of methyl isobranched, methyl anteisobranched, or omega-cyclohexyl fatty acids, neither the ratio of normal micellar/lamellar nor of inverted cubic or hexagonal/lamellar phase-forming lipids are coherently regulated, and in fact in the former case, the changes in lipid polar headgroup composition observed are generally in a direction opposite to that required to maintain the overall lamellar/nonlamellar phase preference of the total membrane lipids constant when hydrocarbon chain length is varied. Similarly, when lipid hydrocarbon structure is varied at a constant effective chain length, a similar lack of coherent regulation of membrane lipid polar headgroup distribution is also observed, although in this case a weak overall trend in the expected direction occurs. We also confirm our previous finding (Foht, P. J., Tran, Q. M., Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13811-13817) that the ratio of inverted phase-forming monoglucosyl diacylglycerol to the lamellar phase-forming glycolipid diglucosyl diacylglycerol, previously used to estimate membrane lipid phase preference in A. laidlawii A and B, is not by itself a reliable indicator of the overall lamellar/nonlamellar phase propensity of the total membrane lipids of these organisms. Our results indicate that A. laidlawii B lacks a coherent mechanism to biosynthetically regulate the polar headgroup distribution of its membrane lipids to maintain the micellar/lamellar/inverted phase propensity constant in the face of induced variations in either the chain length or the structure of its lipid hydrocarbon chains. Finally, we suggest that the lack of a coherent regulatory mechanism to regulate the overall phase-forming propensity of the total membrane lipids of this organism under these circumstances may result in part from its inability to optimize all of the biologically relevant physical properties of its membrane lipid bilayer simultaneously.  相似文献   

10.
The packing of lipids into different aggregates, such as spheres, rods, or bilayers, is dependent on the hydrophobic volume, the hydrocarbon-water interfacial area, and the hydrocarbon chain length of the participating molecules, according to the self-assembly theory [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200]. The origin of the participating molecules should be of no importance with respect to their abilities to affect the above-mentioned parameters. In this investigation, Acholeplasma laidlawii, with a defined acyl chain composition of the membrane lipids, has been grown in the presence of three different classes of foreign molecules, known to partition into model and biological membranes. This results in an extensive metabolic alteration in the lipid polar head group composition, which is expressed as changes in the molar ratio between the lipids monoglucosyldiglyceride (MGDG) and diglucosyldiglyceride (DGDG), forming reversed hexagonal and lamellar phases in excess water, respectively. The formation of nonlamellar phases by A. laidlawii lipids depends critically upon the MGDG concentration [Lindblom, G., Brentel, I., Sj?lund, M., Wikander, G., & Wieslander, A. (1986) Biochemistry (preceding paper in this issue)]. The foreign molecules tested belong to the following groups: nonpolar organic solvents, alcohols, and detergents. Their effects on the gel to liquid crystalline phase transition temperature (Tm), on the order parameter of the acyl chains, and on the phase equilibria between lamellar and nonlamellar liquid crystalline phases in lipid-water model systems are known in several instances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have synthesized a homologous series of saturated 1,2-di-O-n-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols with odd- and even-numbered hydrocarbon chains ranging in length from 10 to 20 carbon atoms, and have investigated their physical properties using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The DSC results show a complex pattern of phase behaviour, which in a typical preheated sample consists of a lower temperature, moderately energetic lamellar gel/lamellar liquid-crystalline (L(beta)/L(alpha)) phase transition and a higher temperature, weakly energetic lamellar/nonlamellar phase transition. On annealing at a suitable temperature below the L(beta)/L(alpha) phase transition, the L(beta) phase converts to a lamellar crystalline (L(c1)) phase which may undergo a highly energetic L(c1)/L(alpha) or L(c1)/inverted hexagonal (H(II)) phase transition at very high temperatures on subsequent heating or convert to a second L(c2) phase in certain long chain compounds on storage at or below 4 degrees C. The transition temperatures and phase assignments for these galactolipids are supported by our XRD and FTIR spectroscopic measurements. The phase transition temperatures of all of these events are higher than those of the comparable phase transitions exhibited by the corresponding diacyl alpha- and beta-D-glucosyl glycerols. In contrast, the L(beta)/L(alpha) and lamellar/nonlamellar phase transition temperatures of the beta-D-galactosyl glycerols are lower than those of the corresponding diacyl phosphatidylethanolamines (PEs) and these glycolipids form inverted cubic phases at temperatures between the lamellar and H(II) phase regions. Our FTIR measurements indicate that in the L(beta) phase, the hydrocarbon chains form a hexagonally packed structure in which the headgroup and interfacial region are undergoing rapid motion, whereas the L(c) phase consists of a more highly ordered, hydrogen-bonded phase, in which the chains are packed in an orthorhombic subcell similar to that reported for the diacyl-beta-D-glucosyl-sn-glycerols. A comparison of the DSC data presented here with our earlier studies of other diacyl glycolipids shows that the rate of conversion from the L(beta) to the L(c) phase in the beta-D-galactosyl glycerols is slightly faster than that seen in the alpha-D-glucosyl glycerols and much faster than that seen in the corresponding beta-D-glucosyl glycerols. The similarities between the FTIR spectra and the first-order spacings for the lamellar phases in both the beta-D-glucosyl and galactosyl glycerols suggest that the headgroup orientations may be similar in both beta-anomers in all of their lamellar phases. Thus, the differences in their L(beta)/L(c) conversion kinetics and the lamellar/nonlamellar phase properties of these lipids probably arise from subtly different hydration and H-bonding interactions in the headgroup and interfacial regions of these phases. In the latter case, such differences would be expected to alter the ability of the polar headgroup to counterbalance the volume of the hydrocarbon chains. This perspective is discussed in the context of the mechanism for the L(alpha)/H(II) phase transition which we recently proposed, based on our X-ray diffraction measurements of a series of PEs.  相似文献   

12.
Although methyl iso- and anteiso-branched fatty acids occur widely in the membrane lipids of prokaryotic microorganisms, relatively little is known about the physical properties of phospholipids containing these fatty acids. We report here a monolayer and differential scanning calorimetric characterization of several synthetic phosphatidylcholines containing branched-chain fatty acids, and describe the interactions of these phospholipids with cholesterol and with a bacterial hopanoid. We find that monolayers as well as bilayers of methyl isobranched- and especially of methyl anteisobranched-fatty-acid-containing phosphatidylcholines exhibit a reduced solid-to-fluid phase transition temperature in comparison with linear saturated fatty acid-containing phosphatidylcholines of comparable chain length. We also find that the liquid-condensed or gel states of branched-chain fatty acid-containing phosphatidylcholines are partially disordered relative to those of phospholipids containing linear saturated fatty acids, although the presence of a methyl branch has only a small effect on hydrocarbon chain packing in the liquid-expanded or liquid-crystalline states. The presence of cholesterol was found to produce a marked condensation of liquid-expanded films and a small condensation of liquid-condensed films, whether the phosphatidylcholine contained linear or branched-chain fatty acyl constituents. The presence of a bacterial hopanoid produced similar, although slightly smaller, monolayer-condensing effects, indicating that these compounds may perform a cholesterol-like function in bacterial membranes.  相似文献   

13.
Hydrocarbon chain conformational and orientational order in liquid-crystalline bilayers of the highly chain-asymmetric 1-O-eicosanoyl, 2-O-dodecanoyl and 1-O-decanoyl, 2-O-docosanoyl phosphatidylcholines were studied by Fourier transform infrared (FTIR) and deuterium nuclear magnetic resonance (2H-NMR) spectroscopy, respectively, and compared with appropriate symmetric-chain phosphatidylcholines at comparable reduced temperatures. FTIR spectroscopy indicates that these two asymmetric-chain phospholipids contain a slightly greater number of kink, a considerably larger number of double-gauche, but a somewhat smaller number of end-gauche conformers than does dipalmitoylphosphatidylcholine, a symmetric-chain phospholipid having the same total number of carbon atoms in its hydrocarbon chains. Moreover, the asymmetric-chain phospholipids also contain a larger total number of gauche conformers, suggesting that their hydrocarbon chains are more disordered overall than are those of dipalmitoylphosphatidylcholine. 2H-NMR studies of the specifically chain-perdeuterated analogs of these asymmetric-chain lipids reveal that the orientational order parameter profiles of their shorter and longer chains differ both qualitatively and quantitatively, regardless of whether they are esterified at the sn1- or sn2 positions of the glycerol molecule. The longer hydrocarbon chains exhibit unusual orientational order profiles in which the order gradient is steepest in the middle of the chain and relatively shallower in regions adjacent to the carboxyl and methyl termini, whereas the short hydrocarbon chains exhibit orientational order profiles typical of those commonly observed with conventional symmetric chain lipids. When compared at equivalent depths in the bilayer, the shorter hydrocarbon chains of the asymmetric-chain lipids are more orientationally disordered than are their longer chain counterparts. At comparable reduced temperatures, the shorter and longer chains of the asymmetric-chain lipids are more orientationally disordered than those of appropriate short and long symmetric-chain lipids, but the chain-averaged orientational order of the symmetric-chain lipid decreases more sharply with increases in temperature than does that of the comparable chain of the asymmetric-chain species. Moreover, the order plateau regions adjacent to the carboxyl groups of the longer chains of the asymmetric-chain phosphatidylcholines are shorter than those of symmetric-chain lipids of comparable hydrocarbon chain length. Overall, the data indicate that the conformational and orientational order in the liquid-crystalline states of these highly asymmetric-chain lipids differ significantly from those of comparable symmetric-chain lipids. Also, the unusual shape of the orientational order profile of the longer chains of the former is attributed to interaction between the methyl termini regions of the long chains with hydrocarbon chains in opposing monolayers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
J T Mason 《Biochemistry》1988,27(12):4421-4429
The mixing behavior of symmetric chain length and mixed chain length phosphatidylcholines in two-component multilamellar bilayers has been investigated by high-sensitivity differential scanning calorimetry. Phase diagrams have been constructed for two-component bilayers composed of C(18)C(18)PC and either C(18)C(16)PC, C(18)C(14)PC, C(18)C(12)PC, or C(18)C(10)PC. It is found that C(18)C(18)PC-C(18)C(16)PC and C(18)C(18)PC-C(18)C(14)PC mixed bilayers exhibit complete miscibility of the components in both the gel and liquid-crystalline phases. Whereas this mixing is observed to be nearly ideal for the C(18)C(18)PC-C(18)C(16)PC binary system, the intermixing of the lipids is highly nonideal in the gel phase of the C(18)C(18)PC-C(18)C(14)PC binary mixture. The C(18)C(18)PC-C(18)C(12)PC and C(18)C(18)PC-C(18)C(10)PC mixed bilayers are characterized by partial immiscibility of the phosphatidylcholine components in the bilayer gel phase. Over a large compositional range, these bilayers appear to consist of phase-separated regions of interdigitated and noninterdigitated gel phases. In addition, the C(18)C(18)PC-C(18)C(10)PC two-component bilayer displays a limited region of liquid-liquid immiscibility in the liquid-crystalline bilayer phase. The phase separation of the mixed chain length phosphatidylcholines revealed in these mixed bilayers may represent a three-dimensional phase separation of the lipid components where the phosphatidylcholines are both laterally separated within the plane of the bilayer and conformationally coupled across the bilayer. Such phase-separated domains could have profound effects on membrane structure and function if they were to occur in biological membranes.  相似文献   

15.
The thermotropic phase behavior of an odd- and an even-numbered member of the homologous series of 1,2-di-omega-cyclohexylphosphatidylcholines was studied using Fourier transform infrared spectroscopy. The results obtained indicate that the pronounced discontinuities in the behavior of the odd- and even-numbered homologues observed by differential scanning calorimetry can be attributed to differences in the organization of their respective gel states. The single phase transition exhibited by the odd-numbered compounds upon heating is shown by infrared spectroscopy to be a direct transition from a condensed, subgel-like phase (Lc phase) to the liquid-crystalline state (L alpha phase). In contrast, the multiple transitions exhibited by the even-numbered homologues are shown to be due to the initial conversion of an L beta-like phase to a more loosely packed gel phase, followed by the acyl chain-melting transition. Moreover, the major changes in the interaction between the acyl chains, and in the organization of the interfacial region of the bilayers formed by the even-numbered homologue, occur at temperatures below that of the onset of the chain-melting phase transition. The infrared spectroscopic changes observed also suggest that above the chain-melting transition, the odd- and even-numbered homologues form similar liquid-crystalline phases that are more 'ordered' than those of normal saturated straight-chain phosphatidylcholines. Most likely this is because the large size and the intrinsic rigidity of the omega-cyclohexyl group reduces the conformational disorder of the liquid-crystalline state by 'dampening' all acyl chain motions. The formation of a relatively ordered liquid-crystalline state may be the critical property exploited by the thermoacidophylic organisms in which omega-cyclohexyl fatty acids naturally occur.  相似文献   

16.
The phase behaviour of aqueous dispersions of a series of synthetic 1,2-di-O-alkyl-3-O-(beta-D-glucosyl)-rac-glycerols with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry and low angle X-ray diffraction (XRD). Thermograms of these lipids show a single, strongly energetic phase transition, which was shown to correspond to either a lamellar gel/liquid crystalline (L(beta)/L(alpha)) phase transition (short chain compounds, n < or =14 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (longer chain compounds, n > or =15 carbon atoms) by XRD. The shorter chain compounds may exhibit additional transitions at higher temperatures, which have been identified as lamellar/nonlamellar phase transitions by XRD. The nature of these nonlamellar phases and the number of associated intermediate transitions can be seen to vary with chain length. The thermotropic phase properties of these lipids are generally similar to those reported for the corresponding 1,2-sn-diacyl alpha- and beta-D-glucosyl counterparts, as well as the recently published 1, 2-dialkyl-3-O-(beta-D-glycosyl)-sn-glycerols. However, the racemic lipids studied here show no evidence of the complex patterns of gel phase polymorphism exhibited by the above mentioned compounds. This suggests that the chirality of the glycerol molecule, by virtue of its position in the interfacial region, may significantly alter the phase properties of a lipid, perhaps by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

17.
J M East  A G Lee 《Biochemistry》1982,21(17):4144-4151
1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.  相似文献   

18.
X-ray diffraction methods were used to characterize the thermotropic polymorphism exhibited by aqueous dispersions of a homologous series of 1,2-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols. Upon cooling from temperatures at which the acyl chains of these lipids are melted, all of these compounds form structures that exhibit both low-angle and wide-angle diffraction patterns consistent with the formation of lamellar L beta gel phases. After a suitable protocol of low-temperature annealing, complex diffraction patterns consistent with the formation of highly ordered, lamellar, crystal-like phases are obtained. These patterns are similar for all of the compounds studied, suggesting that the unit cell structure is invariant. The assumption that the unit cell structure is invariant permits the assignment of phases to the diffraction orders, thereby making possible the construction of electron density profiles. These electron density profiles indicate that the crystal-like phases of these lipids are poorly hydrated structures with the hydrocarbon chains inclined at 35 degrees to the bilayer normal. The diffraction patterns of the crystal-like phases of these lipids changed abruptly at the calorimetrically determined phase transition temperatures to those characteristic of either lamellar liquid crystalline phases (N less than or equal to 17) or inverted nonbilayer phases. With these X-ray diffraction data we demonstrate that, at elevated temperatures, the shorter chain homologues (N less than or equal to 16) form cubic phases of the Pn3m space group, whereas the longer chain compounds form inverted hexagonal phases.  相似文献   

19.
The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.  相似文献   

20.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号