首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma corticosterone increases in association with migratory flight in the red knot Calidris canutus islandica, suggesting that corticosterone may promote migratory activity and/or energy mobilization in this species. This hypothesis is supported by general effects of glucocorticoids, which include stimulation of locomotion and the mobilization of energy depots. We experimentally examined the role of elevated corticosterone levels in the migratory red knot by comparing foraging behavior, flight frequency, and plasma metabolites between vehicle-injected controls and birds treated with RU486, an antagonist to the genomic low-affinity glucocorticoid receptor (GR). We predicted that RU486 treatment would interfere with energy mobilization. However, we expected no effects on flight activity because recent studies suggest that glucocorticoids affect locomotion through a nongenomic receptor. Finally, because glucocorticoids exert permissive effects on food intake, we postulated that RU486 treatment in the red knot would interfere with feeding. Results were consistent with the latter prediction, suggesting that the GR participates in the promotion of hyperphagia, the intense feeding state that is characteristic of the migratory condition. RU486 treatment did not affect flight frequency, suggesting that corticosterone may support migratory activity through a receptor other than the GR. Energy metabolism (as determined through plasma metabolites) was also unaffected by RU486, possibly because energetic demands experienced by captive birds were low.  相似文献   

2.
Flight activities of three Spodoptera species were measured by the aid of flight actograph: S. litura and S. exuiga being regarded as long‐distance migratory insects, and S. depravata being non‐migratory and diapause‐inducible species. In all species tested, flight activities were observed only in scotophase, males showed far higher activities than females, being several times higher at the time of maximum flight activity, which was observed within 2 days after adult eclosion. Total flight activity in males was highest in S. litura, some being flyable even 12 days after eclosion, followed by S. exigua being one‐third compared to the former species, while in S. depravata flight activity was nearly half of that of the second species and most ceased to fly within a week after eclosion. There occurred species‐specific daily rhythms in flight activity during respective scotophase. In S. litura, both females and males exhibited a peak of flight activity shortly after light‐off and exhibited the second flight activity in late scotophase, the females slightly but the males more actively compared to early scotophase. In S. exigua, both sexes did not respond to light‐off, did not show a peak of flight activity in early scotophase, whereas males, but not females prominently increased activity toward the end of scotophase. In S. depravata, both sexes exhibited a peak of flight activity in early scotophase, and the males revived flight activity, being maximum shortly before light‐on, but the females did not show a clear rhythm in flight activity. These features observed in flight activity were discussed in relation with migratory capability.  相似文献   

3.
Plasma corticosterone increases during the period of spring migration in a variety of bird species. Long-distance migrants show elevations in corticosterone specifically in association with the stage of flight, suggesting that corticosterone may support flight-related processes, for example, locomotor activity and/or energy mobilization. The pattern of corticosterone secretion as it relates to migratory flight has hitherto not been clearly described in migrants that frequently interrupt flight to refuel, for example, the Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). The Gambel's white-crowned sparrow fuels by day and expresses peak migratory activity during the first few hours of night. To determine if plasma corticosterone increases in association with the stage of migratory flight also in this short-bout migrant, we induced captive white-crowned sparrows to enter into the migratory condition by placing photosensitive birds on long days (16L:8D) and then evaluated birds for plasma corticosterone and locomotor activity during four time points of the day. Patterns found in long-day birds were compared to those observed in short-day controls (8L:16D). Differences in energy metabolism as determined from plasma metabolites were also evaluated. We found that locomotor activity and corticosterone were significantly elevated at the onset of the dark period, but only in long-day birds. Plasma beta-hydroxybutyrate (a ketone body) was also elevated. Thus, findings suggest that plasma corticosterone and ketogenesis increase in association with migratory restlessness in a short-bout migrant. In fact, corticosterone may play a regulatory role, because it shows a trend to increase already before night-time activity.  相似文献   

4.
5.
Recent advances in tracking technology are based on the use of miniature sensors for recording new aspects of individual migratory behaviour. In this study, we have used activity data loggers with barometric and temperature sensors to record the flight altitudes as well as ground elevations during stationary periods of migratory songbirds. We tracked one individual of red‐backed shrike and one great reed warbler along their autumn migration from Europe to Africa. Both individuals performed their migration stepwise in travel segments and climbed most metres during the passage across the Mediterranean Sea and the Sahara Desert and least metres during the first flight segment in Europe. The great reed warbler reached its highest flight altitude of 3950 m a.s.l. during the travel segment from Europe to west Africa, while the red‐backed shrike reached 3650 m a.s.l as maximum flight altitude during its travel segment from Sahel to southern Africa. Both individuals used both lowlands and highlands for resting periods along their migrations. Furthermore, temperature decreased with increasing altitude during migratory flights for both individuals, highlighting the potential to determine flight duration from temperature measurements. Finally, we discuss how barometric data could be used to investigate birds’ responses to changes in air pressure as a cue for departures on migratory flights. This new technique, i.e. using a miniature data logger with barometric pressure sensor to estimate flight altitudes and ground elevations, will open up new avenues for research and importantly advance our understanding on how small birds behave during migratory flights.  相似文献   

6.
ABSTRACT. Topical application of the juvenile hormone mimic, Altosid, to Hippodamia convergens (Guérin-Méneville) (Coccinellidae) stimulated a significant increase in long-term flight behaviour in both males and females. Altosid treatment also stimulated ovarian development in females. Topical application of precocene II to H.convergens inhibited flight activity in treated animals of both sexes for about 10 days. Altosid treatment to precocene-treated beetles significantly increased their migratory behaviour over that of precocene-treated or acetone-treated controls. These results indicate that juvenile hormone stimulates migratory flight behaviour in this species along with reproductive development. It is likely that the hormone serves to coordinate migration with reproduction in the young adult.  相似文献   

7.
Avian migration is a seasonal activity that requires intricate timing on both an annual and daily basis. With increasing evidence for endogenous regulation of daily activities in migrant species, we tested whether a circadian oscillator may be involved with the expressions of daily locomotor activities and specific behaviors of the long-distance migrant, Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). Our previous studies have identified both daytime and nighttime behavioral patterns under a photoperiod of 18L:6D. In 2 separate trials, birds in the vernal migratory life-history stage were exposed to constant dim light, (DD)dim, and constant bright light, LL, while locomotor activity and behavioral observations were collected. Under (DD)dim, the daytime behaviors that included active and quiescent components observed under 18L:6D were lost as migratory restlessness, the intense nighttime activity, persisted nonstop for 36.4 h. Furthermore, the specific behaviors of migratory restlessness that are normally confined to the dark phase of 18L:6D, beak-up and beak-up flight, were expressed also during the subjective day of (DD)dim. Birds exposed to LL retained similar patterns of activity to the 18L:6D condition for 3 days, after which they became arrhythmic. Behavioral observations of intense locomotor activity observed during the subjective night of LL revealed no beak-up and beak-up flight. Thus, the complete expression of migratory restlessness that includes beak-up and beak-up flight may not be regulated by a circadian oscillator but instigated by very low light intensity. Locomotor activity and associated daytime behaviors appear to be influenced by a circadian oscillator, given their persistent patterns under LL. Therefore, we suggest that the separate components of migratory behavior are regulated differentially by a circadian oscillator and ambient lighting conditions.  相似文献   

8.
Both wing size and wing shape affect the flight abilities of birds. Intra and inter‐specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture Cathartes aura, an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non‐migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite‐tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike what has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower‐cost flight, through low wing‐loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.  相似文献   

9.
Many species of migratory birds migrate in a series of solitary nocturnal flights. Between flights, they stop to rest and refuel for the next segment of their journey. The mechanism controlling this behaviour has long remained elusive. Here, we show that wild-caught migratory redstarts (Phoenicurus phoenicurus) are consistent in their flight scheduling. An advanced videographic system enabled us to determine the precise timing of flight activity in redstarts caught at a northern European stopover site during their return trip from Africa. Birds were held captive for three days in the absence of photoperiodic cues (constant dim light) and under permanent food availability. Despite the absence of external temporal cues, birds showed clear bimodal activity patterns: intense nocturnal activity alternating with diurnal foraging and resting periods. The onset of their migratory activity coincided with the time of local sunset and was individually consistent on consecutive nights. The data demonstrate that night-migrating birds are driven by autonomous circadian clocks entrained by sunset cues. This timekeeping system is probably the key factor in the overall control of nocturnal songbird migration.  相似文献   

10.
黄地老虎Agrotis segetum是一种重要的农业迁飞性害虫,研究飞行生物学对明确其迁飞机理有重要意义。本项研究利用昆虫飞行磨系统对黄地老虎的飞行能力进行了测定。对实验室种群飞行能力的测定结果表明:1日龄成虫的飞行能力最弱;3日龄飞行能力最强,其24 h平均飞行时间、平均飞行距离和平均飞行速率分别达到12.16±0.74 h、48.94±3.40 km和3.76±0.12 km/h。雌蛾与雄蛾间的各项飞行参数均无显著差异,但处女成虫平均飞行距离和平均飞行速率均显著高于已交配个体。对渤海湾野外迁飞种群飞行能力的测定显示,早季节北迁个体和晚季节回迁个体的平均飞行时间和平均飞行距离无显著差异,但皆显著低于实验室种群。黄地老虎具有较强的飞行能力,日龄和交配是影响其飞行能力的关键因素。  相似文献   

11.
Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major‐effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.  相似文献   

12.
Conflicting pressures on the evolution of wing morphology are exemplified within the avian genus Anthus , where different migratory and flight display behaviours might be expected to exert different effects on the evolution of wing morphology. A phylogenetically controlled study of wing shape in relation to migratory distance and flight display suggests that migration has a larger impact on wing morphology than does flight display, despite the fact that flight display is generally the more heavily used flight-type. Correlations between single measures of morphology and migration were found only in males, although principal components analysis suggests that overall wing shape is correlated with migratory distance in both sexes. With regard to flight display, males, but not females, show a positive relationship between flight display type and the length of a flight feather that is highly elongated relative to other flight feathers. This exceptionally long flight feather is also found in other genera that perform flight displays.  相似文献   

13.
1. Many migratory animals undergo physiological and behavioural changes to prepare for and sustain long-distance movements. Because insect migrations are common and diverse, studies that examine how migratory insects meet the energetic demands of long-distance movements are badly needed. 2. Monarch butterflies (Danaus plexippus) migrate up to 4000 km annually from eastern North America to wintering sites in central Mexico. Autumn generation monarchs undergo physiological and behavioural changes in response to environmental cues to initiate migration. In particular, exposure to cooler temperatures and shorter day lengths in early autumn causes monarchs to enter the hormonally induced state of reproductive diapause. 3. This study examined differences in flight-associated metabolic rate (MR) and flight performance metrics for monarchs experimentally reared under autumn-like conditions (typically experienced before the southward migration) relative to monarchs reared under summer-like conditions. 4. Adult monarchs reared under autumn-like conditions showed lower post-flight MRs, greater flight efficiency, and lower measures of reproductive activity relative to monarchs reared under summer-like conditions. Increases in post-flight metabolism were associated with monarch body weight, age, and flight velocity. 5. These findings suggest that a trans-generational shift in flight energetics is an important component of the monarch's complex migratory syndrome, and that physiological changes that accompany reproductive diapause facilitate energy conservation during flight.  相似文献   

14.
温、湿度对粘虫蛾飞行能源物质利用的影响   总被引:2,自引:1,他引:2  
系统研究了不同温、湿度对粘虫蛾飞行能源物质消耗的影响,结果表明,温、湿度对成虫飞行能源物质消耗有显著影响,在适宜的温、湿度下飞行时,粘虫蛾主要飞行能源物质(甘油三酯和糖原)消耗最少,其飞行单位距离所需的甘油三酯也最少,即能源利用效率最高,随着温,湿度从适宜到不适宜,甘油三酯消耗有逐渐增多的趋势,但温,湿度对成虫飞行能源物质消耗会因蛾龄及性别的不同而异,在所测试的几种温,湿度下(高温35℃除外),5日龄成虫在飞行中消耗的甘油三酯最多,低龄和高龄时消耗均较少,高温下飞行时,雄蛾比雌蛾消耗的能源物质多,而在高温或低湿条件下,雌蛾比雄蛾消耗的多,进一步对影响成虫飞行能源物质消耗的海藻糖酶活力及呼吸强度研究表明,温、湿度对海藻糖酶活性有明显影响,在适宜的温,湿度下,酶的活性高,反之,酶的活性降低,其中高温对酶活性的抑制作用比低温明显,但高湿和低湿对酶活性的抑制作用基本一致,成虫呼吸强度随温度的升降而升降,飞行初期成虫呼吸强度急剧增加,但0.5h后开始下降并维持在一个较稳定的水平,根据所获结果对温、湿度与粘虫蛾飞行能源物质消耗之间的内在联系进行了讨论.  相似文献   

15.
We describe a method and device (< 1.2 g) for recording, processing and storing data about activity and location of individuals of free‐living songbirds throughout the annual cycle. Activity level was determined every five minutes from five 100 ms samples of accelerometer data with 5 s between the sampling events. Activity levels were stored on an hourly basis throughout the annual cycle, allowing periods of resting/sleep, continuous flight and intermediate activity (foraging, breeding) to be distinguished. Measurements from a light sensor were stored from preprogrammed key stationary periods during the year to provide control information about geographic location. Successful results, including annual actogram, were obtained for a red‐backed shrike Lanius collurio carrying out its annual loop migration between northern Europe and southern Africa. The shrike completed its annual migration by performing > 66 (max. 73) nocturnal migratory flights (29 flights in autumn and > 37, max. 44, in spring) adding up to a total of > 434 (max. 495) flight hours. Migratory flights lasted on average 6.6 h with maximum 15.9 h. These flights were aggregated into eight travel episodes (periods of 4–11 nights when flights took place on the majority of nights). Daytime resting levels were much higher during the winter period compared to breeding and final part of spring migration. Daytime resting showed peaks during days between successive nocturnal flights across Sahara, continental Africa and the Arabian Peninsula, indicating that the bird was mostly sleeping between these long migratory flights. Annual activity and flight data for free‐living songbirds will open up many new research possibilities. Main topics that can be addressed are e.g. migratory flight performance (total flight investment, numbers and characteristics of flights), timing of stationary periods, activity patterns (resting/sleep, activity level) in different phases of the annual cycle and variability in the annual activity patterns between and within individuals.  相似文献   

16.
Migration by flight is an important component of the life cycles of most insects. The probability that a given insect will migrate by flight is influenced by many factors, most notably the presence or absence of fully-developed wings and functional flight musculature. Considerable variation has also been reported in the flight propensity of fully-winged individuals with functional flight musculature. We test the hypothesis that these components of migratory tendency are genetically correlated in a wing-dimorhic cricket, Gryllus firmus. Flight propensity and condition of the dorsal longitudinal flight muscles (DLM) are examined in fully-winged (LW) crickets from lines selected for increasing and for decreasing %LW, as well as from unselected control lines. Increased %LW is found to be associated with increased flight propensity among individuals with intact DLM, and with retention of functional DLM. The opposite is true for lines selected for decreased %LW. These results indicate both phenotypic and genetic correlations among behavioral, physiological, and morphological traits determining migratory tendency. We propose that these correlations may result from the multifunctional role of juvenile hormone, which has been reported to influence wing development, flight muscle development and degeneration, and flight propensity. Finally, we discuss the potential influence of genetic correlations for migratory traits on the evolution and maintenance of migratory polymorphisms in insects.  相似文献   

17.
Aspects of the role and activation of the enzyme triacylglycerol lipase (TAG lipase) in the fat body of the migratory locust Locusta migratoria were investigated. TAG lipase is under the hormonal control of the three endogenous adipokinetic peptides of the migratory locust, Locmi-AKH-I, Locmi-AKH-II and Locmi-AKH-III. Injection of low doses (5-10 pmol) of each peptide causes an increase in lipase activity. The activation of lipase is time dependent: an elevated activity was recorded 15 min after injection of 10 pmol Locmi-AKH-I and maximum activation was reached after 45-60 min. The activation of TAG lipase is also dose-dependent. Doses of 2 pmol of each Locmi-AKH had no effect, whereas 5 pmol caused a significant activation. Maximum activation is reached with a dose of 10 pmol. Analogues of the second messengers cAMP (cpt-cAMP) and IP(3) (F-IP(3)) both activate the enzyme glycogen phosphorylase whereas only cpt-cAMP, but not F-IP(3), activates TAG lipase; cpt-cAMP elevates the lipid levels in the haemolymph. Activation of lipase is specific to the three endogenous AKH peptides: 5 pmol of the endogenous peptide Locmi-HrTH and 10 pmol of corazonin failed to activate lipase. High doses of octopamine did not activate lipase nor did they elevate the lipid concentration in the haemolymph. TAG lipase is stimulated by flight activity but activation is slower than that of glycogen phosphorylase: after 30 min of flight or after 5 min of flight plus 1h of subsequent rest, activity of TAG lipase is increased, but not immediately after 5 min of flight. In contrast, glycogen phosphorylase is activated significantly after 5 min of flight. These activation patterns of the two enzymes mirror-image the concentration of their substrates in the haemolymph: there is a significant decrease in the concentration of carbohydrates after 5 min of flight, whereas no change of the concentration of lipids can be measured after such short time of flight activity; however, a subsequent rest period of 1h is sufficient to increase the lipid concentration.  相似文献   

18.
甘蓝夜蛾Mamestra brassicae Linnaeus飞行能力研究   总被引:1,自引:0,他引:1  
【目的】测定日龄、性别、交配等因素对农业迁飞性害虫甘蓝夜蛾Mamestra brassicae Linnaeus飞行能力的影响,为其迁飞行为研究和异地测报提供理论依据。【方法】在气温为(24±1)℃、相对湿度为75%±5%的实验室环境下,利用飞行磨系统对甘蓝夜蛾实验室种群1~5日龄未交配个体、已交配的3日龄个体以及野外迁飞种群分别进行连续24 h吊飞测试,记录其累计飞行时间、累计飞行距离、平均飞行速率等参数。【结果】甘蓝夜蛾实验室种群的飞行能力随日龄增长而变化,初羽化时即具有较强的飞行能力,2~3日龄达到峰值,4~5日龄的飞行能力显著下降;雌性甘蓝夜蛾的飞行能力强于雄性甘蓝夜蛾;交配的甘蓝夜蛾平均飞行速率显著小于处女甘蓝夜蛾,但二者的平均飞行时间和飞行距离均无显著差异。此外,渤海湾迁飞种群中晚季节南迁种群的飞行能力显著强于早季节北迁种群和过渡种群。【结论】日龄和交配状态是影响甘蓝夜蛾飞行能力的关键因素。  相似文献   

19.
Hypertrophy of the flight muscles is regularly observed in birds prior to long-distance migrations. We tested the hypothesis that a large migratory bird would increase flight behaviour prior to migration, in order to cause hypertrophy of the flight muscles, and upregulate key components of the aerobic metabolic pathways. Implantable data loggers were used to record year-round heart rate in six wild barnacle geese (Branta leucopsis), and the amount of time spent in flight each day was identified. Time in flight per day did not significantly increase prior to either the spring or the autumn migration, both between time periods prior to migration (5, 10 and 15 days), or when compared with a control period of low activity during winter. The lack of significant increase in flight prior to migration suggests that approximately 22 min per day is sufficient to maintain the flight muscles in condition for prolonged long-distance flight. This apparent lack of a requirement for increased flight activity prior to migration may be attributable to pre-migratory mass gains in the geese increasing workload during short flights, potentially prompting hypertrophy of the flight muscles.  相似文献   

20.
Abstract  The flight activity of Spodoptera litura in tethered conditions is evaluated using a computer-mediated flight-mill in the laboratory. The 3–4-day-old moths fly longer and farther than those of other ages. Male and female moths exhibit similar flight activity. Mating status does not influence the flight duration and distance of 2-day-old females. However, these two flight parameters with a 6-day-old mated female is significantly lower than that of unmated ones. The optimum temperature for flight ranged from 16–24°C, whereas the optimum RH ranged from 60%–100%. During 72-h period, the total flight duration and distance of 1-day-old male and female moths were 19.6 h (± 5.8) and 83.3 km (± 28.4), and 24.0 h (± 7.0) and 105.4 km (± 37.4), respectively. These results indicate that S. litura has a great potential to undertake long-distance migratory flights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号