首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the pro-peptide of human nerve growth factor (NGF) facilitates oxidative folding of the mature part. For the analysis of functional specificities of the pro-peptides of NGF and the related neurotrophin-3 (NT-3) with respect to structure formation, chimeric proteins with swapped pro-peptides were generated. Neither the structure nor the stability of the mature domains was influenced by the heterologous pro-peptides. For the pro-peptide of NT-3 fused to the mature part of NGF, stabilization of the pro-peptide moiety by the NGF part was observed. Folding kinetics and renaturation yields of this chimeric protein were comparable to those of proNGF. Our results demonstrate functional interchangeability between the pro-peptides of NGF and NT-3 with respect to their role in assisting oxidative folding of the mature part.  相似文献   

2.
3.
目的观察腹腔注射米诺环素对改良Allen’s法造成的不完全脊髓损伤大鼠脊髓中脑源性神经营养因子以及神经营养因子3表达的影响,探讨米诺环素治疗脊髓损伤的作用机制。方法成年雌性Sprague-Dawley(SD)大鼠54只,改良Allen’s法造成不完全脊髓损伤,根据实验需要可以分为3组,空白组,只打开脊柱椎板,不损伤;治疗组,大鼠脊髓损伤,并腹腔注射米诺环素;损伤组,大鼠脊髓损伤,腹腔注射等剂量的生理盐水。观察各组大鼠的后肢能力Basso-Beattie-Bresnahan评分,并于不同时段(3d、7d,14d)取大鼠脊髓T8-9段采用逆转录PCR,以及免疫化学组织染色法测定脑源性神经营养因子以及神经营养因子3的表达。结果米诺环素能够明显改善不完全脊髓损伤大鼠的功能,逆转录PCR和脊髓组织冰冻切片免疫组织化学染色DAB都能证实米诺环素治疗组脑源性神经营养因子以及神经营养因子3表达显著增多。结论米诺环素在治疗不完全脊髓损伤大鼠的机制还应与其上调了大鼠体内的脑源性神经营养因子以及神经营养因子3表达有关。  相似文献   

4.
5.
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

6.
Fibroblast growth factors (FGFs) are a family of nine proteins that bind to three distinct types of cell surface molecules: (i) FGF receptor tyrosine kinases (FGFR-1 through FGFR-4); (ii) a cysteine-rich FGF receptor (CFR); and (iii) heparan sulfate proteoglycans (HSPGs). Signaling by FGFs requires participation of at least two of these receptors: the FGFRs and HSPGs form a signaling complex. The length and sulfation pattern of the heparan sulfate chain determines both the activity of the signaling complex and, in part, the ligand specificity for FGFR-1. Thus, the heparan sulfate proteoglycans are likely to play an essential role in signaling. We have recently identified a role for FGF in limb bud development in vivo. In the chick limb bud, ectopic expression of the 18 kDa form of FGF-2 or FGF-2 fused to an artificial signal peptide at its amino terminus causes skeletal duplications. These data, and the observations that FGF-2 is localized to the subjacent mesoderm and the apical ectodermal ridge in the early developing limb, suggest that FGF-2 plays an important role in limb outgrowth. We propose that FGF-2 is an apical ectodermal ridgederived factor that participates in limb outgrowth and patterning. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Carbohydrates have been shown to mediate or modulate a number of important events in the development of the nervous system; however, there is little evidence that they participate directly in the development of synapses. One carbohydrate structure that is likely to be important in synaptic development of the neuromuscular junction is the CT carbohydrate antigen [GalNAcbeta1,4[NeuAcalpha2,3]Galbeta1(-3GalNAc or -4GlcNAc)]. The synaptic localization of the CT antigen is due to the presence of the terminal beta1,4 GalNAc linkage, and such linkages are localized to the neuromuscular junction in many species. Here we show that an enzyme that can create the synaptic CT structure, the CT GalNAc transferase, is also confined to the neuromuscular junction in mice. Using transgenic mice, we show that overexpression of the CT GalNAc transferase in extrasynaptic regions in skeletal myofibers caused as much as a 60% reduction in the diameter of adult myofibers and an order of magnitude increase in satellite cells. Neuromuscular junctions of transgenic mice had severely reduced numbers of secondary folds, Schwann cell processes were present in the synaptic cleft, and secondary folds were often misaligned with active zones. In addition, multiple presynaptic specializations occurred on individual myofibers. In addition, some normally synaptic proteins, including laminin alpha4, laminin alpha5, utrophin, and NCAM, were expressed along extrasynaptic regions of myofibers. One of the muscle proteins that displayed increased glycosylation with the CT antigen in the transgenic mice was alpha-dystroglycan. These experiments provide the first in vivo evidence that a synaptic carbohydrate antigen has important roles in the development of the neuromuscular synapse and suggest that the CT antigen is involved in controlling the expression of synaptic molecules.  相似文献   

8.
Ren JC  Fan XL  Song XA  Shi L 《生理学报》2011,63(1):75-80
本研究旨在探讨模拟失重对大鼠比目鱼肌肌梭神经营养因子3(neurotrophin-3,NT-3)表达的影响。采用大鼠尾部悬吊法建立模拟失重动物模型,按体重配对原则随机将大鼠分为5组,即尾悬吊3d组、7d组、14d组、21d组和正常同步对照组。采用免疫组织化学ABC染色法及酶联免疫吸附实验法(ELISA)检测大鼠比目鱼肌肌梭NT-3的表达。结果显示,大鼠比目鱼肌梭外肌中未见到NT-3表达;正常对照组大鼠比目鱼肌肌梭中,核袋1和核袋2纤维NT-3呈现强阳性表达;模拟失重后,梭内肌纤维的NT-3免疫染色反应进行性降低;NT-3的ELISA定量检测结果显示,正常组、尾悬吊3d组、7d组、14d组和21d组大鼠比目鱼肌NT-3的含量分别为(14.23±1.65)、(14.11±1.53)、(13.09±1.47)、(12.45±1.51)和(9.85±1.52)pg/mg。统计比较显示,尾悬吊14d后,大鼠比目鱼肌NT-3的含量较正常对照组明显减少(P<0.05);而尾悬吊21d后,大鼠比目鱼肌NT-3的表达进一步减少(P<0.01)。以上结果表明,模拟失重可致大鼠比目鱼肌肌梭NT-3的表达明显减少,并且随着模拟失重时...  相似文献   

9.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

10.
Abstract: The tissue distribution of neurotrophin-3 (NT-3) was investigated in rats at 1 month of age using a newly established, sensitive two-site enzyme immunoassay system for NT-3, as well as the immunocytochemical localization of this protein. The immunoassay for NT-3 enabled us to quantify NT-3 at levels > 3 pg per assay. In the rat brain, NT-3 was detectable only in the olfactory bulb (0.54 ng/g wet weight), cerebellum (0.71 ng/g), septum (0.91 ng/g), and hippocampus (6.3 ng/g). By contrast, NT-3 was widely distributed in peripheral tissues. Appreciable levels of NT-3 were also found in the thymus (31 ng/g), heart (38 ng/g), diaphragm (21 ng/g), liver (45 ng/g), pancreas (892 ng/g), spleen (133 ng/g), kidney (40 ng/g), and adrenal gland (46 ng/g). An antibody specific for NT-3 bound to pyramidal cells in the CA2-CA4 regions of the hippocampus, to A cells in the islets of Langerhans in the pancreas, to unidentified cells in the red pulp of the spleen, to liver cells, and to muscle fibers in the diaphragm from rats at 1 month of age. Molecular masses of NT-3-immunoreactive proteins in the hippocampus and pancreas were 14 and 12 kDa, respectively. Thus, in rats, NT-3 was detected in restricted regions of the brain and in the visceral targets of the nodose ganglia at high concentrations. Our present results suggest that NT-3 not only functions as a classical target-derived neurotrophic factor but also can play other roles.  相似文献   

11.
The HIV protease inhibitor indinavir adversely impairs carbohydrate and lipid metabolism, whereas its influence on protein metabolism under in vivo conditions remains unknown. The present study tested the hypothesis that indinavir also decreases basal protein synthesis and impairs the anabolic response to insulin in skeletal muscle. Indinavir was infused intravenously for 4 h into conscious rats, at which time the homeostasis model assessment of insulin resistance was increased. Indinavir decreased muscle protein synthesis by 30%, and this reduction was due to impaired translational efficiency. To identify potential mechanisms responsible for regulating mRNA translation, several eukaryotic initiation factors (eIFs) were examined. Under basal fasted conditions, there was a redistribution of eIF4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex, and this change was associated with a marked decrease in the phosphorylation of 4E-BP1 in muscle. Likewise, indinavir decreased constitutive phosphorylation of eIF4G and mTOR in muscle, but not S6K1 or the ribosomal protein S6. In contrast, the ability of a maximally stimulating dose of insulin to increase the phosphorylation of PKB, 4E-BP1, S6K1, or mTOR was not altered 20 min after intravenous injection. Indinavir increased mRNA expression of the ubiquitin ligase MuRF1, but the plasma concentration of 3-methylhistidine remained unaltered. These indinavir-induced changes were associated with a marked reduction in the plasma testosterone concentration but were independent of changes in plasma levels of IGF-I, corticosterone, TNF-alpha, or IL-6. In conclusion, indinavir acutely impairs basal protein synthesis and translation initiation in skeletal muscle but, in contrast to muscle glucose uptake, does not impair insulin-stimulated signaling of protein synthetic pathways.  相似文献   

12.
A high-performance liquid chromatography with electrochemical detection (HPLC-ED) method is described for determination of 3-methoxy-4-hydroxyphenylglycol (MHPG) in microdialysate from the skeletal muscle interstitial space. Using a microdialysis technique, we sampled 30 microl dialysate from the skeletal muscle interstitial space and injected dialysate directly into HPLC-ED system. The control MHPG concentration of dialysate was 213+/-18 pg/ml. The MHPG concentrations were reduced by entacapone (catechol-O-methyltransferase inhibitor, COMT), augmented by local infusion of dihydroxyphenylglycol. This system offers a new possibility for simple, rapid monitoring of MHPG as an index of COMT activity in skeletal muscle.  相似文献   

13.
Ca2+ sparks are localized intracellular Ca2+ release events from the sarcoplasmic reticulum in muscle cells that result from synchronized opening of ryanodine receptors (RyR). In mammalian skeletal muscle, RyR1 is the predominant isoform present in adult skeletal fibers, while some RyR3 is expressed during development. Functional studies have revealed a differential role for RyR1 and RyR3 in the overall Ca2+ signaling in skeletal muscle, but the contribution of these two isoforms to Ca2+ sparks in adult mammalian skeletal muscle has not been fully examined. When enzyme-disassociated, individual adult skeletal muscle fibers are exposed to an osmotic shock, the resting fiber converts from a quiescent to a highly active Ca2+ release state where Ca2+ sparks appear proximal to the sarcolemmal membrane. These osmotic shock-induced Ca2+ sparks occur in ryr3(-/-) muscle with a spatial distribution similar to that seen in wild type muscle. Kinetic analysis reveals that systemic ablation of RyR3 results in significant changes to the initiation, duration and amplitude of individual Ca2+ sparks in muscle fibers. These changes may reflect the adaptation of the muscle Ca2+ signaling or contractile machinery due to the loss of RyR3 expression in distal tissues, as biochemical assays identify significant changes in expression of myosin heavy chain protein in ryr3(-/-) muscle.  相似文献   

14.
15.
Mice overexpressing human UCP-3 in skeletal muscle (UCP-3tg) are lean despite overeating, have increased metabolic rate, and their skeletal muscle mitochondria show increased proton conductance. The true function of UCP-3 however, has yet to be determined. It is assumed that UCP-3tg mice have increased fatty acid beta-oxidation to fuel their increased metabolic rate. In this study we have quantified skeletal muscle mRNA levels of a number of genes involved in fatty acid metabolism. mRNA levels of uncoupling protein-2, carnitine palmitoyl transferase-1beta and fatty acid binding proteins, and transporters were unchanged when compared to wild-type mice. Lipoprotein lipase mRNA was slightly, but significantly, increased by 50%. The most notable change in gene expression was a threefold increase in mitochondrial thioesterase (MTE-1) expression. In the face of a chronic increase in mitochondrial uncoupling these changes suggest that increased flux of fatty acids through the beta-oxidation pathway does not necessarily require marked changes in expression of genes involved in fatty acid metabolism. The large increase in MTE-1 both confirms the importance of this gene in situations where mitochondrial beta-oxidation is increased and supports the hypothesis that UCP-3 exports fatty acids generated by MTE-1 in the mitochondrion.  相似文献   

16.
Muscle disuse has numerous physiological consequences that end up with significant catabolic metabolism and ultimately tissue atrophy. What is not known is how muscle atrophy affects the endocannabinoid (EC) system. Arachidonic acid (AA) is the substrate for anandamide (AEA) and 2-arachidonylgycerol (2-AG), which act as agonists for cannabinoid receptors CB1 and CB2 found in muscle. Diets with n-3 polyunsaturated fatty acids (PUFA) have been shown to reduce tissue levels of AA, AEA and 2-AG. Therefore, we hypothesized that hind limb suspension (HS)-induced muscle atrophy and intake of n-3 PUFA will change mRNA levels of the EC system. Mice were randomized and assigned to a moderate n-3 PUFA [11.7 g/kg eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA)], high n-3 PUFA (17.6 g/kg EPA+DHA) or control diets for 12 days and then subjected to HS or continued weight bearing (WB) for 14 days. HS resulted in body weight, epididymal fat pad and quadriceps muscle loss compared to WB. Compared to WB, HS had greater mRNA levels of AEA and 2-AG synthesis enzymes and CB2 in the atrophied quadriceps muscle. The high n-3 PUFA diet resulted in greater mRNA levels of EC synthesis enzymes, and CB1 and CB2. The higher mRNA levels for EC with HS and dietary n-3 PUFA suggest that muscle disuse and diet induce changes in the EC system to sensitize muscle in response to metabolic and physiological consequences of atrophy.  相似文献   

17.
18.
19.
Phosphatidylinositol (PI) breakdown represents a powerful system participating in the transduction mechanism of some neurotransmitters and growth factors and producing two second messengers, diacylglycerol and inositol trisphosphate. The transformation of PC12 neuroblastoma cells into neuron-like cells induced by nerve growth factor (NGF) is preceded by a rapid stimulation of PI breakdown; however, it was not known whether PI breakdown mediates actions of other members of the neurotrophin family. The present study analyzed the effects of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on PI breakdown in primary cultures of embryonic rat brain cells. Cultures were grown for 7 days; PI was then labeled by incubating cultures with myo-[3H]inositol, which then were exposed acutely to growth factors. BDNF and NT-3, but not NGF, elevated the levels of labeled inositol phosphates within 10-15 min after addition to the cultures in a dose-dependent manner. ED50 values for BDNF and NT-3 were 12.4 and 64.5 ng/ml, respectively. Comparable effects were found in cultures of cortical, striatal, and septal cells. The actions of BDNF and NT-3 probably reflect actions on neurons, because no effects were seen in cultures of nonneuronal cells. In contrast, basic fibroblast growth factor induced a marked stimulation of PI breakdown in cultures of nonneuronal cells. K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor proteins, prevented the PI breakdown mediated by BDNF and NT-3. The findings suggest that rapid and specific induction of PI breakdown is involved in the signal transduction of BDNF and NT-3, and they provide evidence that cortical neurons are functionally responsive to BDNF and NT-3 during development.  相似文献   

20.
Intensive muscle tension induces significant blood accumulation of enzymes and structural proteins of the muscle origin. Altered macromolecular permeability of the sarcolemma is attributed to integrity of sarcolemmal cytoskeleton, mainly to dystrophin-sarcoglycan (DSG) complex. It is known that intensive tension of the antigravity extensor muscles is observed under conditions of gravitational overloading. We assumed that acute exposure to hypergravity would lead to serum accumulation of creatine phosphokinase (CK) associated with considerably altered integrity of the dystrophin layer in fibers of extensor muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号