首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin-3 (NT-3) in skeletal muscle (myo/NT-3 mice) to explore whether NT-3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT-3 mRNA using RT-PCR revealed that levels of endogenous NT-3 mRNA in wild-type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT-3 mice had significantly elevated levels of NT-3 mRNA that were maintained or increased following injury. To assess whether muscle-derived NT-3 could prevent injury-induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT-3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT-3 were observed in wild-type mice injected with exogenous NT-3 in the gastrocnemius muscles. To test whether NT-3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT-3 muscles after nerve section, demonstrating that NT-3 overexpression cannot maintain spindles following complete denervation. Moreover, NT-3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT-3 has important neuroprotective effects on muscle afferents during postnatal development.  相似文献   

2.
During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin‐3 (NT‐3) in skeletal muscle (myo/NT‐3 mice) to explore whether NT‐3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT‐3 mRNA using RT‐PCR revealed that levels of endogenous NT‐3 mRNA in wild‐type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT‐3 mice had significantly elevated levels of NT‐3 mRNA that were maintained or increased following injury. To assess whether muscle‐derived NT‐3 could prevent injury‐induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT‐3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT‐3 were observed in wild‐type mice injected with exogenous NT‐3 in the gastrocnemius muscles. To test whether NT‐3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT‐3 muscles after nerve section, demonstrating that NT‐3 overexpression cannot maintain spindles following complete denervation. Moreover, NT‐3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT‐3 has important neuroprotective effects on muscle afferents during postnatal development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 198–208, 2002; DOI 10.1002/neu.10024  相似文献   

3.
A chemoattractant role for NT-3 in proprioceptive axon guidance   总被引:2,自引:0,他引:2       下载免费PDF全文
Neurotrophin-3 (NT-3) is required for proprioceptive neuron survival. Deletion of the proapoptotic gene Bax in NT-3 knockout mice rescues these neurons and allows for examination of their axon growth in the absence of NT-3 signaling. TrkC-positive peripheral and central axons from dorsal root ganglia follow proper trajectories and arrive in close proximity to their targets but fail to innervate them. Peripherally, muscle spindles are absent and TrkC-positive axons do not enter their target muscles. Centrally, proprioceptive axons branch in ectopic regions of the spinal cord, even crossing the midline. In vitro assays reveal chemoattractant effects of NT-3 on dorsal root ganglion axons. Our results show that survival factor NT-3 acts as a short-distance axon guidance molecule for muscle sensory afferents as they approach their proper targets.  相似文献   

4.
The peroxidase-antiperoxidase (PAP) method, and a specific monoclonal antibody (192-IgG) were used to determine the localization of nerve growth factor receptor (NGFr) in the skeletal muscles of the adult rats. The rectus femoris and the gastrocnemius (medialis and lateralis) muscles were analyzed. Occurrence of NGFr immunoreactivity was observed in: 1) a subpopulation of myelinated nerve fibers within muscle nerve trunks; 2) the vascular adventitia and nerve-like profiles around the blood vessels; 3) the outer capsule and the surface of the intrafusal muscle fibers of muscle spindles. Conversely, images, suggesting the presence of NGFr on muscle fibers or in motor end-plates, were not found. Our results suggest the presence of NGF-binding sites in sensory and sympathetic nerve fibers, and/or their target tissues localized on the skeletal muscles of the rat, whereas the motor nerve fibers lack of NGFr. The dependence of sympathetic neurons, proprioceptive primary sensory neurons, and motoneurons innervating the mammalian muscles upon NGF or other neurotrophic factors is discussed.  相似文献   

5.
Charcot–Marie–Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss. We generated a mouse model of CMT type 2E (CMT2E) expressing human neurofilament light E396K (hNF‐LE396K), which develops decreased motor nerve conduction velocity, ataxia and muscle atrophy by 4 months of age. Symptomatic hNF‐LE396K mice developed phenotypes that were consistent with proprioceptive sensory defects as well as reduced sensitivity to mechanical stimulation, while thermal sensitivity and auditory brainstem responses were unaltered. Progression from presymptomatic to symptomatic included a 50% loss of large diameter sensory axons within the fifth lumbar dorsal root of hNF‐LE396K mice. Owing to proprioceptive deficits and loss of large diameter sensory axons, we analyzed muscle spindle morphology in presymptomatic and symptomatic hNF‐LE396K and hNF‐L control mice. Muscle spindle cross‐sectional area and volume were reduced in all hNF‐LE396K mice analyzed, suggesting that alterations in muscle spindle morphology occurred prior to the onset of typical CMT pathology. These data suggested that CMT2E pathology initiated in the muscle spindles altering the proprioceptive sensory system. Early sensory pathology in CMT2E could provide a unifying hypothesis for the convergence of pathology observed in CMT.  相似文献   

6.
Elevation of intracellular heat shock protein (Hsp)70 increases resistance of cells to many physical and metabolic insults. We tested the hypothesis that treatment with Hsc70 can also produce that effect, using the model of axotomy-induced neuronal death in the neonatal mouse. The sciatic nerve was sectioned and in some animals purified bovine brain Hsc70 was applied to the proximal end of the nerve immediately thereafter and again 3 days later. Seven days postaxotomy, the surviving sensory neurons of the lumbar dorsal root ganglion (DRG) and motoneurons of the lumbar ventral spinal cord were counted to assess cell death. Axotomy induced the death of approximately 33% of DRG neurons and 50% of motoneurons, when examined 7 days postinjury. Application of exogenous Hsc70 prevented axotomy-induced death of virtually all sensory neurons, but did not singificantly alter motoneuron death. Thus, Hsc70 may prove to be useful in the repair of peripheral sensory nerve damage.  相似文献   

7.
Muscle spindle development and function are dependent upon sensory innervation. During muscle regeneration, both neural and muscular components of spindles degenerate and it is not known whether reinnervation of a regenerating muscle results in reestablishment of proper neuromuscular relationships within spindles or whether sensory neurons may exert an influence upon differentiation of these spindles. Muscle spindle regeneration was studied in bupivacaine-treated grafts of rat extensor digitorum longus (EDL) muscles. Three types of EDL graft were performed in order to manipulate the extent to which regenerating spindles might be reinnervated: (1) grafts reinnervated following severance of their nerve supply (standard grafts); (2) grafts in which intact nerve sheaths appear to facilitate reinnervation (nerveintact grafts); and (3) grafts in which reinnervation was prevented (nonreinnervated grafts). Complete degeneration of muscle fibers occurred in all grafts prior to regeneration. Initial formation of spindles in regenerating EDL grafts is independent of innervation; intrafusal muscle fibers degenerate and regenerate within spindle capsules that remain intact and viable. The extent of spindle differentiation was evaluated in each type of graft using criteria that included nucleation and ATPase activity, both of which have been shown to be regulated by sensory innervation, as well as the number of muscle fibers/spindle and morphology of spindle capsules.While most spindles contained normal numbers of muscle fibers, most of these fibers were morphologically and histochemically abnormal. Alterations of ATPase activity occurred in all spindles, but were least severe in nerve-intact grafts. While fully differentiated nuclear bag and chain fibers were not observed in regenerated spindles, large, vesicular nuclei, similar to those of normal intrafusal fibers, were present in a small number of spindles in nerve-intact grafts. Sensory nerve terminations were observed only in those spindles that also contained the distinctive nuclei. This study suggests that a specific neurotrophic influence is necessary for regeneration of normal intrafusal muscle fibers and that this influence corresponds to the properly timed sensory neuron-muscle interaction which directs muscle spindle embryogenesis. However, the infrequent occurrence of characteristics unique to intrafusal muscle fibers indicates that reinnervation of regenerating muscle grafts by sensory neurons is inadequate and/or faulty.  相似文献   

8.
9.
We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), nedurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%–30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy. Our studies confirm and extend previous reports on the time course of axotomy-induced mouse motoneuron death and the survival promoting effects of neurotrophic factors. 1994 John Wiley & Sons, Inc.  相似文献   

10.
Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.  相似文献   

11.
12.
The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.  相似文献   

13.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by gamma motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

14.
Recent investigations of proprioreceptors in the walking systems of cats, insects and crustaceans have identified reflex pathways that regulate the timing of the transition from stance to swing, and control the magnitude of ongoing motoneuronal activity. An important finding in the cat is that during locomotor activity, the influence of feedback from the Golgi tendon organs in extensor muscles onto extensor motoneurons is reversed from inhibition to excitation. The excitatory action of tendon organs during stance ensures that stance is maintained while extensor muscles are loaded, and may regulate the magnitude of extensor activity according to the load carried by the leg. Afferents from primary and secondary spindles in extensor and flexor muscles have also been found to influence the timing of the locomotor rhythm in a functionally relevant manner. Recent studies indicate that reflex reversals and the regulation of timing by multiple proprioceptive systems are also features of walking systems in arthropods.  相似文献   

15.
Two-dimensional electrophoresis has allowed a higher-resolution comparison of rapid transport in ventral horn motoneurons and bidirectionally in dorsal root sensory neurons. Dorsal root ganglia 8 and 9, or hemisected spinal cords, from frog were selectively exposed in vitro to 35S-methionine. Transported, labelled proteins that accumulated in 3 mm segments proximal to ligatures on dorsal roots and spinal nerves or sciatic nerves were subjected to two-dimensional gel electrophoresis. Comparisons were made of fluorographic patterns from dried gels. Sixty-five species of proteins were found to be rapidly transported in both bifurcations of dorsal root sensory neurons. No abundant species of protein was rapidly transported in dorsal roots that was not also found in spinal nerves. A comparison of proteins rapidly transported in the sciatic nerve from ventral horn motoneurons with those from dorsal root sensory neurons yielded 50 common species of polypeptides. At most four minor species were possibly transported only in ventral horn motoneurons. An overall comparison indicates that at least 45 species of proteins, including all of the more abundantly transported ones, were consistently common to both dorsal root bifuractions and to ventral horn motoneurons. This appears to be the case despite the very different functions carried out by motoneurons and sensory neurons.  相似文献   

16.
Neonatal sciatic nerve injury is known to result in an extensive loss of lumbar motor neurons as well as the disappearance of their respective muscle fibers in the hindlimb musculature. The loss of motor neurons and muscle fibers can be prevented by immediate administration of target-derived neurotrophic factors to the site of injury. In the present study, we investigated the role of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the survival and maturation of a subset of motor neurons innervating the extensor digitorum longus (EDL) and tibialis anterior (TA) muscles. We have shown that combined administration of CNTF and BDNF prevented the loss of motor units after neonatal nerve injury and contributed to the maintenance of muscle mass. Importantly, this combined neurotrophin regimen also prevented the disappearance of muscle fibers that express myosin heavy chain IIB (MyHC IIB) in both EDL and TA muscles 3 mo after neonatal sciatic nerve crush. In parallel studies, we observed a higher level of BDNF in EDL muscle during the critical period of development when motor neurons are highly susceptible to target removal. Given our previous findings that combined administration of CNTF with neurotrophin-3 (NT-3) or neurotrophin-4/5 (NT-4/5) did not result in the rescue of MyHC IIB fibers in EDL, the present results show the importance of muscle-derived BDNF in the survival and maturation of a subpopulation of motor neurons and of MyHC IIB muscle fibers during neonatal development of the neuromuscular system. motor neurons; neuromuscular development; neurotrophins  相似文献   

17.
Ling KK  Lin MY  Zingg B  Feng Z  Ko CP 《PloS one》2010,5(11):e15457
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ~28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.  相似文献   

18.
Our previous finding that skin-derived and muscle-derived molecules can be used to sort regenerating rat sciatic nerve axons evoked questions concerning neuron-target interactions at the level of single cells, which prompted the present study. The results show that dorsal root ganglion (DRG) neurons co-cultured with fibroblast-like skin-derived cells emit many neurites. These have a proximal linear segment and a distal network of beaded branches in direct relation to skin-derived cells. Electron microscopic examination of such co-cultures showed bundles of neurites at some distance from the target cells and single profiles closely apposed to subjacent cells. RNase protection assay revealed that cultivated skin-derived cells express nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). In co-cultures of DRG neurons and 3T3 fibroblasts overexpressing either of the neurotrophins produced by skin-derived cells the picture varied. NT-3 transfected 3T3 fibroblasts gave a growth pattern similar to that seen with skin-derived cells. Neurons co-cultured with mock-transfected 3T3 fibroblasts were small and showed weak neurite growth. In co-cultures with a membrane insert between skin-derived cells or 3T3 fibroblasts and DRG neurons few neurons survived and neurite growth was very sparse. We conclude that skin-derived cells stimulate neurite growth from sensory neurons in vitro, that these cells produce NGF, BDNF, NT-3 and NT-4 and that 3T3 fibroblasts producing NT-3 mimic the effect of skin-derived cells on sensory neurons in co-culture. Finally the results suggest that cell surface molecules are important for neuritogenesis.  相似文献   

19.
A morphometric analysis of the masseteric motoneuron pool of the trigeminal motor nucleus was performed in the rat using horseradish peroxidase as a marker. Thick (40 microns) cryosections and thin (7 microns) Paraplast sections were compared. Two types of motoneurons related to the masseter muscle were observed. Small motoneurons, which had a high nuclear index, were found interspersed between large motoneurons, which had more cytoplasm. Evidence is provided that the small trigeminal motoneurons are gamma neurons that innervate the intrafusal muscle fibers of the masseteric muscle spindles.  相似文献   

20.
Target-derived influences of nerve growth factor on neuronal survival and differentiation are well documented, though effects of other neurotrophins are less clear. To examine the influence of NT-3 neurotrophin overexpression in a target tissue of sensory and sympathetic neurons, transgenic mice were isolated that overexpress NT- 3 in the epidermis. Overexpression of NT-3 led to a 42% increase in the number of dorsal root ganglia sensory neurons, a 70% increase in the number of trigeminal sensory neurons, and a 32% increase in sympathetic neurons. Elevated NT-3 also caused enlargement of touch dome mechanoreceptor units, sensory end organs innervated by slowly adapting type 1 (SA1) neurons. The enlarged touch dome units of the transgenics had an increased number of associated Merkel cells, cells at which SA1s terminate. An additional alteration of skin innervation in NT-3 transgenics was an increased density of myelinated circular endings associated with the piloneural complex. The enhancement of innervation to the skin was accompanied by a doubling in the number of sensory neurons expressing trkC. In addition, measures of nerve fibers in cross- sectional profiles of cutaneous saphenous nerves of transgenics showed a 60% increase in myelinated fibers. These results indicate that in vivo overexpression of NT-3 by the epidermis enhances the number of sensory and sympathetic neurons and the development of selected sensory endings of the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号