首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of "barrel cortex" ablation upon the biometrics of "exploratory" whisking were examined in three head-fixed rats which had previously sustained unilateral ablation of the left cortical "barrel field" under electrophysiological control. Unconditioned movements of a pair of bilaterally homologous whiskers (C-1, Right, Left) were monitored, optoelectronically, with other whiskers present. Whisking movements on the intact and ablated side were analyzed with respect to kinematics (protraction amplitude and velocity) whisking frequency and phase relationships between whisking movement on the two sides of the face. Histological analysis confirmed complete removal of S-1 "barrel cortex". In normal animals whisking movements have a characteristic rhythm (6-9 Hz), and protractions on the two sides of the face tend to be both synchronous and of very similar amplitudes. In the lesioned animals, whisking frequency was unchanged and whisking movements remained bilaterally synchronous. However, there was a significant difference between the amplitude of Right and Left whisker movements which was evident many months postoperatively. Our results suggest that the deficits in vibrissa-mediated tactile discrimination reported after "barrel" field ablation may reflect an impairment in the animal's ability to modulate whisking parameters on the two sides of the face to meet the functional requirements of a discriminative whisking task. The effects upon whisking amplitude seen after unilateral barrel field ablation are consistent with a model in which the activity of a whisking Central Pattern Generator is modulated by descending inputs to achieve sensorimotor control of whisking movement parameters.  相似文献   

2.
Previous studies, based on qualitative observations, reported that lesions of the whisker motor cortex produce no deficits in whisking behavior. We used high-resolution optoelectronic recording methods to compare the temporal organization and kinematics of whisker movements before and after unilateral lesions of whisker motor cortex in rats. We now report that while the lesion did not abolish whisking, it significantly disrupted whisking kinematics, coordination, and temporal organization. Lesioned animals showed significant increases in the velocity and amplitude of whisker protractions contralateral to the lesions, as well as a reduction in the synchrony of whisker movements on the two sides of the face. There was a marked shift in the distribution of whisking frequencies, with reduction of activity in the 5-7 Hz bandwidth and increased activity at < 2 Hz. Disruptions of the normal whisking pattern were evident on both sides of the face, and the magnitude of these effects was proportional to the extent of the cortical ablation. We suggest that the observed deficits reflect an imbalance in cortical inputs to a brainstem central pattern generator.  相似文献   

3.
Previous studies, based on qualitative observations, reported that lesions of the whisker motor cortex produce no deficits in whisking behavior. We used high-resolution optoelectronic recording methods to compare the temporal organization and kinematics of whisker movements before and after unilateral lesions of whisker motor cortex in rats. We now report that while the lesion did not abolish whisking, it significantly disrupted whisking kinematics, coordination, and temporal organization. Lesioned animals showed significant increases in the velocity and amplitude of whisker protractions contralateral to the lesions, as well as a reduction in the synchrony of whisker movements on the two sides of the face. There was a marked shift in the distribution of whisking frequencies, with reduction of activity in the 5–7?Hz bandwidth and increased activity at <?2?Hz. Disruptions of the normal whisking pattern were evident on both sides of the face, and the magnitude of these effects was proportional to the extent of the cortical ablation. We suggest that the observed deficits reflect an imbalance in cortical inputs to a brainstem central pattern generator.  相似文献   

4.
The peripheral effector system mediating rodent whisking produces protraction/retraction movements of the whiskers and translation movements of the collagenous mystacial pad. To examine the interaction of these movements during whisking in air we used high-resolution, optoelectronic methods for two-dimensional monitoring of whisker and pad movements in head-fixed rats. Under these testing conditions (1) whisker movements on the same side of the face are synchronous and of similar amplitude; (2) pad movements exhibit the characteristic 'exploratory' rhythm (6-12 Hz) of whisking but their movements often have a low frequency (1-2 Hz) component; (3) Pad movements occur in both antero-posterior and dorso-ventral planes but there are considerable variations in the amplitude and topography of movement parameters in the two planes. We conclude that (a) both whisker and pad receive input from a common central rhythm generator; (b) differences in whisker and pad amplitude and topography probably reflect differences in the biomechanical properties of the structures receiving that input; (c) pad movements make a significant contribution to the kinematics of whisking behavior and (d) the two-dimensional nature of pad translation movements significantly increases the rat's flexible control of its mobile sensor.  相似文献   

5.
The rat’s ability to vary its whisking “strategies” to meet the functional demands of a discriminative task suggests that whisking may be characterized as a “voluntary” behavior—an operant—and like other operants, should be modifiable by appropriate manipulations of response–reinforcer contingencies. To test this hypothesis we have used high-resolution, optoelectronic “real-time” recording procedures to monitor the movements of individual whiskers and reinforce specific movement parameters (amplitude, frequency). In one operant paradigm (N = 9) whisks with protractions above a specified amplitude were reinforced (Variable Interval 30?s) in the presence of a tone, but extinguished (EXT) in its absence. In a second paradigm (N = 3), rats were reinforced on two different VI schedules (VI-20s/VI-120s) signaled, respectively, by the presence or absence of the tone. Selective reinforcement of whisking movements maintained the behavior over many weeks of testing and brought it under stimulus and schedule control. Subjects in the first paradigm learned to increase responding in the presence of the tone and inhibit responding in its absence. In the second paradigm, subjects whisked at significantly different rates in the two stimulus conditions. Bilateral deafferentation of the whisker pad did not impair conditioned whisking or disrupt discrimination behavior. Our results confirm the hypothesis that rodent whisking has many of the properties of an operant response. The ability to bring whisking movement parameters under operant control should facilitate electrophysiological and lesion/behavioral studies of this widely used “model” sensorimotor system.  相似文献   

6.
Electromyographic recordings from the mystacial pad of rats were used to assess the effect of unilateral vibrissa contact on the bilateral movement of the vibrissae. A first group of animals was trained to whisk freely in air and served to establish the baseline variability in bilateral symmetry. We observed that the electromyogram (EMG) activity across the two mystacial pads was rhythmic and synchronous to within 2 ms on a whisk-by-whisk basis; this value is small in comparison with the approximately 50 ms required for protraction during the whisk cycle. A second group of animals was trained to use their vibrissae to contact a sensor that was located on one side of the head. The average EMG activity across the two pads was synchronous at the time of vibrissa contact, albeit with higher variability than for the case of free whisking. In contrast, the average amplitude of the activity on the contact vs noncontact side of the face was transiently greater, by 25% or approximately 10 degrees, at the time of contact. These data show that the amplitude of the vibrissae on the two sides of the face can be controlled independently, while the timing of vibrissa movement is largely synchronous.  相似文献   

7.
Activity-dependent plasticity in rodent whisker barrel cortex was examined by means of high-resolution 2-deoxyglucose (2-DG) with immunohistochemical double labeling. Hamsters with all but one, two, or four follicles ablated on postnatal day 7 received 2-DG injections as adults. Autoradiograms of follicle-ablated animals showed heavy activation of the entire barrel field during normal behavior, despite the missing whiskers. The intensity of 2-DG labeling was significantly reduced if the whiskers spared after follicle ablation were trimmed prior to the 2-DG injection, demonstrating that the widespread activation was driven by the spared whiskers. This widespread metabolic activation of the adult barrel field after neonatal follicle ablation was in sharp contrast to the somatotopically appropriate 2-DG labeling in barrel fields of normal adults subject to acute trimming of most whiskers, but was similar to that seen in normal adult animals with all whiskers intact. The results demonstrate large-scale plasticity of barrel circuitry following neonatal sensory deprivation, and provide a powerful functional anatomical setting to investigate underlying mechanisms  相似文献   

8.
Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions were typically characterized by a single acceleration-deceleration event, whisking amplitude and velocity were correlated, and whisk duration correlated with neither amplitude nor velocity. Upon contact with an object, a second acceleration-deceleration event occurred in about 25% of whisk cycles, involving both contacting (C2) and non-contacting (C1, D1) whiskers ipsilateral to the object. In these cases, the rostral whisker (C2) remained in contact with the object throughout the double-peak phase, which effectively prolonged the duration of C2 contact. These “touch-induced pumps” (TIPs) were detected, on average, 17.9 ms after contact. On a slower time scale, starting at the cycle following first touch, contralateral amplitude increased while ipsilateral amplitude decreased. Our results demonstrate that sensory-induced motor modulations occur at various timescales, and directly affect object palpation.  相似文献   

9.
During 'active touch' the rodent whiskers scan the environment in a series of repetitive movements ('whisks') generating afferent signals which transform the spatial properties of objects into spatio-temporal patterns of neural activity. Based upon analyses carried out in a single movement plane, it has been generally assumed that these trajectories are essentially uni-dimensional, although more complex movements have been described in some rodents. The present study was designed to examine this assumption and to more precisely characterize whisking topography by monitoring whisking trajectories along both the antero-posterior and dorso-ventral axes. Using optoelectronic monitoring techniques with high-spatio-temporal resolution, movement data were obtained from a population of vibrissae sampled at different locations on the mystacial pad in head-fixed rats isolated from the perturbing effects of contact. For a substantial proportion of the population of whisking movements sampled, the trajectories generated by a single whisker is most accurately described as occupying an expended two-dimensional space in which the A-P component predominates. However, the whisker system exhibits a considerable range of trajectory types, suggesting a high degree of movement flexibility. For each vibrissa position, it was possible to delineate a 'trajectory' domain-that portion of the animal's whisking space which is scanned by the movements of that vibrissa during whisking. Since the 'domains' of adjacent whiskers in the same row tend to overlap, synchronized movements of a subset of whiskers could generate a set of overlapping somatosensory fields analogous to overlapping retinal receptive fields. The organization of such trajectory domains within the rats' whisking space could provide the spatial component of the spatio-temporal integration process required to extract information about environmental features from the inputs generated by its recursive whisking movements.  相似文献   

10.
During 'active touch' the rodent whiskers scan the environment in a series of repetitive movements ('whisks') generating afferent signals which transform the spatial properties of objects into spatio-temporal patterns of neural activity. Based upon analyses carried out in a single movement plane, it has been generally assumed that these trajectories are essentially uni-dimensional, although more complex movements have been described in some rodents. The present study was designed to examine this assumption and to more precisely characterize whisking topography by monitoring whisking trajectories along both the antero-posterior and dorso-ventral axes. Using optoelectronic monitoring techniques with high-spatio-temporal resolution, movement data were obtained from a population of vibrissae sampled at different locations on the mystacial pad in head-fixed rats isolated from the perturbing effects of contact. For a substantial proportion of the population of whisking movements sampled, the trajectories generated by a single whisker is most accurately described as occupying an expended two-dimensional space in which the A-P component predominates. However, the whisker system exhibits a considerable range of trajectory types, suggesting a high degree of movement flexibility. For each vibrissa position, it was possible to delineate a 'trajectory' domain -- that portion of the animal's whisking space which is scanned by the movements of that vibrissa during whisking. Since the 'domains' of adjacent whiskers in the same row tend to overlap, synchronized movements of a subset of whiskers could generate a set of overlapping somatosensory fields analogous to overlapping retinal receptive fields. The organization of such trajectory domains within the rats' whisking space could provide the spatial component of the spatio-temporal integration process required to extract information about environmental features from the inputs generated by its recursive whisking movements.  相似文献   

11.
Rodent whisking behavior provides active touch as input into a widely studied model system of information processing and behavior. We previously developed a simple optoelectronic system to monitor whisker movements in “real time” in head held rats at rest or performing various tasks such as tactile discrimination. We now describe a simple piezioelectic film device for detecting initial whisker contacts during whisking also in real time. In some applications this is as effective as high-speed videos and can be configured to isolate the contacts from different whiskers. The construction of this simple device is detailed. In addition to providing information during recordings from awake animals, the device could be used, for example, as an operant manipulandum for contingent reinforcement of object detection with a whisker.  相似文献   

12.
We compared whisking movement patterns during acquisition of tactile detection and object discrimination under conditions in which (a) head movements are excluded and (b) exposure to tactile discriminanda is confined to the large, moveable vibrissae (macrovibrissae). We used optoelectronic instrumentation to track the movements of an individual whisker with high spatio-temporal resolution and a testing paradigm, which allowed us to dissociate performance on an “indicator” response (lever pressing) from the rat's “observing” responses (discriminative whisking). We analyzed the relation between discrimination performance and whisking movement patterns in order to clarify the process by which the indicator response comes under the stimulus control of information acquired by the rat's whisking behavior. Whisking patterns over the course of task acquisition differed with task demands. Acquisition of the Detection task was correlated with modulation of only one whisking movement parameter - total number of whisks emitted, and more whisking was seen on trials in which the discriminandum was absent. Discrimination between a sphere and cube differing in size and texture was correlated with a reduction in whisk duration and protraction amplitude and with a shift towards higher whisking frequencies. Our findings confirm previous reports that acquisition of tactile discriminations involves modulation by the animal of both the amount and the type of whisking. In contrast with a previous report (Brecht et al., 1997), they indicate that rats can solve tactile object detection and discrimination tasks (a) using only the large, motile mystacial vibrissae (macrovibrissae) and (b) without engaging in head movements.We conclude that the functional contribution of the macrovibrissae will vary with the nature of the task and the conditions of testing.  相似文献   

13.
14.
The rat's ability to vary its whisking "strategies" to meet the functional demands of a discriminative task suggests that whisking may be characterized as a "voluntary" behavior--an operant--and like other operants, should be modifiable by appropriate manipulations of response-reinforcer contingencies. To test this hypothesis we have used high-resolution, optoelectronic "real-time" recording procedures to monitor the movements of individual whiskers and reinforce specific movement parameters (amplitude, frequency). In one operant paradigm (N = 9) whisks with protractions above a specified amplitude were reinforced (Variable Interval 30 s) in the presence of a tone, but extinguished (EXT) in its absence. In a second paradigm (N = 3), rats were reinforced on two different VI schedules (VI-20s/VI-120s) signaled, respectively, by the presence or absence of the tone. Selective reinforcement of whisking movements maintained the behavior over many weeks of testing and brought it under stimulus and schedule control. Subjects in the first paradigm learned to increase responding in the presence of the tone and inhibit responding in its absence. In the second paradigm, subjects whisked at significantly different rates in the two stimulus conditions. Bilateral deafferentation of the whisker pad did not impair conditioned whisking or disrupt discrimination behavior. Our results confirm the hypothesis that rodent whisking has many of the properties of an operant response. The ability to bring whisking movement parameters under operant control should facilitate electrophysiological and lesion/behavioral studies of this widely used "model" sensorimotor system.  相似文献   

15.
We used optical imaging of intrinsic cortical signals, elicited by whisker stimulation, to define areas of activation in primary sensory cortex of normal hamsters and hamsters subjected to neonatal follicle ablation at postnatal day seven (P7). Follicle ablations were unilateral, and spared either C-row whiskers or the second whisker arc. This study was done to determine if the intrinsic cortical connectivity pattern of the barrel cortex, established during the critical period, affects the process of representational plasticity that follows whisker follicle ablation. Additionally, we tested the ability to monitor such changes in individual cortical whisker representations using intrinsic signal imaging. Stimulation of a single whisker yielded peak activation of a barrel-sized patch in the somatotopically appropriate location in normal cortex. In both row and arc-spared animals, functional representations corresponding to spared follicles were significantly stronger and more oblong than normal. The pattern of activation differed in the row-sparing and arc-sparing groups, in that the expansion was preferentially into deprived, not spared areas. Single whisker stimulation in row-spared cases preferentially activated the corresponding barrel arc, while stimulation of one whisker in arc-spared cases produced elongated activation down the barrel row. Since whisker deflection normally has a net inhibitory effect on neighboring barrels, our data suggest that intracortical inhibition fails to develop normally in deprived cortical columns. Because thalamocortical projections are not affected by follicle ablation after P7, we suggest that the effects we observed are largely cortical, not thalamocortical.  相似文献   

16.
We used optical imaging of intrinsic cortical signals, elicited by whisker stimulation, to define areas of activation in primary sensory cortex of normal hamsters and hamsters subjected to neonatal follicle ablation at postnatal day seven (P7). Follicle ablations were unilateral, and spared either C-row whiskers or the second whisker arc. This study was done to determine if the intrinsic cortical connectivity pattern of the barrel cortex, established during the critical period, affects the process of representational plasticity that follows whisker follicle ablation. Additionally, we tested the ability to monitor such changes in individual cortical whisker representations using intrinsic signal imaging. Stimulation of a single whisker yielded peak activation of a barrel-sized patch in the somatotopically appropriate location in normal cortex. In both row and arc-spared animals, functional representations corresponding to spared follicles were significantly stronger and more oblong than normal. The pattern of activation differed in the row-sparing and arc-sparing groups, in that the expansion was preferentially into deprived, not spared areas. Single whisker stimulation in row-spared cases preferentially activated the corresponding barrel arc, while stimulation of one whisker in arc-spared cases produced elongated activation down the barrel row. Since whisker deflection normally has a net inhibitory effect on neighboring barrels, our data suggest that intracortical inhibition fails to develop normally in deprived cortical columns. Because thalamocortical projections are not affected by follicle ablation after P7, we suggest that the effects we observed are largely cortical, not thalamocortical.  相似文献   

17.
Rodents use their whiskers to explore their environment and to make very fine discriminations in textures and sizes of objects. Exploratory “whisking” movements consist of large amplitude, rhythmic whisker protractions that occur at characteristic frequencies of 5–10?Hz. Rodents likely whisk to move their receptor surface over the object they are touching. A fundamental understanding of this important motor behavior and the sensorimotor loops that control it were the focus of the final session of the Barrels Workshop. This session began with talks from David Kleinfeld (University of California San Diego), Miguel Nicolelis (Duke University), and Jonathan Rubin (University of Pittsburgh). These talks were followed by short presentations from Steven Leiser (Drexel University), Marcin Szwed (Weitzman Institute), Ford Ebner (Vanderbilt University), Charles Pluto (Medical College of Ohio), and Elisabeth Foeller (Washington University).  相似文献   

18.
目的:观察豚鼠单侧触觉剥夺后豚鼠两侧桶状皮质的DCX阳性细胞数量的差别,探讨触觉剥夺对豚鼠桶状皮质神经发生的影响。方法:12只健康豚鼠随机分为2组,每组6只,制作豚鼠单侧(右侧)触觉(胡须)剥夺模型,之后常规饲养1月和2月灌注取材,用免疫组化和免疫荧光双标法观察同一只豚鼠两侧桶状皮质的DCX阳性细胞情况并比较其数量差异。结果:DCX免疫组织化学染色显示两实验组大脑皮层barrel区DCX阳性细胞数实验侧均明显多于对照侧;NeuN免疫组织化学染色显示两实验组动物大脑皮层barrel区两侧NeuN阳性细胞数差别无统计学意义;DCX和NeuN免疫荧光双标染色显示两实验组大脑皮层barrel区均可见双标细胞存在。结论:触觉剥夺后豚鼠两侧桶状皮质的DCX阳性细胞数具有明显差异性,可能是神经再生的表现。  相似文献   

19.
Abstract The one-to-one correspondence of whiskers to barrels in layer IV of rodent somatosensory cortex can be demonstrated by a precise match between columns of heavy 2-deoxyglucose (2DG) label in layer IV barrels and other layers which correspond to stimulated whiskers. While there is specificity of peripheral-to-central mapping, the extent to which integration and/or modulation are generated by circuitry within or interactions between the barrel-defined whisker columns is not clear. Following stimulation of selected whiskers, large cells at the layer IV-V boundary throughout the barrel field are heavily labeled by 2-deoxyglucose (2DG) at high resolution. Many of these cells are outside the barrel columns of the stimulated whiskers. Further, the number of cells labeled is not directly related to the number of activated barrel columns. These neurons are not labeled in animals anesthetized before 2DG injection and are not as heavily labeled in barrel fields of somnolent animals. Most of the heavily labeled neurons immunolabel for glutamate decarboxylase (GAD) and are presumed to be inhibitory, while a smaller number of labeled neurons, presumed to be excitatory, immunolabel for glutamate (Glu). Similar populations of large, heavily 2DG-labeled neurons are found in other cortical areas. These relatively few neurons are exceptionally active and may modulate integrative functions of cerebral cortex.  相似文献   

20.
The rat's mystacial vibrissae are active during exploratory and discriminative behaviors, with individual vibrissae serving as elements in a receptive array scanned across object surfaces. To facilitate neurobehavioral analysis of this sensorimotor system, we have developed an experimental paradigm that confines vibrissa movements to a defined physical location, makes possible on-line monitoring of “whisking” activity, and brings such activity under associative control using operant conditioning procedures. Rats were secured, and movements of an identified bilaterally homologous pair of vibrissae (right and left gamma straddlers) were detected by laser-based photodetectors. Subjects were maintained on a water deprivation schedule, and whisker movements were monitored during adaptation to the test situation and after the clipping of other vibrissae on both sides of the snout. Rats were reinforced with water delivery for emitting vibrissa movements in the presence of a conditioned stimulus (tone) whose presentation was made contingent upon a prior period of nonwhisking. The rate and temporal distribution of vibrissa movements were brought under experimental control by means of interval and ratio reinforcement schedules. Although the procedures provide minimal information about the kinematics or topography of conditioned vibrissa movements, they permit the investigator to manipulate response parameters normally under the voluntary control of the animal in a preparation amenable to neurophysiological analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号