首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood platelets play a crucial part in the blood clotting process by forming the platelet plug. Recent evidence indicates that they are likely to play a key role in the inflammatory reaction via CD154/CD40 interactions. CD40 was known to be widely expressed, for instance on cells of the vasculature including endothelial cells, smooth muscle cells and macrophages. It was also known that the triggering of CD40 on these cells led to the acquisition of an activated pro-inflammatory and pro-coagulant phenotype. It was subsequently shown that platelets express CD154 which is cryptic in unstimulated platelets but is expressed at the platelet surface upon platelet activation. When expressed at the platelet surface and exposed to CD40-expressing vascular cells, the platelet-associated CD154 triggers a variety of pro-inflammatory and pro-coagulant responses including induction of adhesion receptors, release of cytokines and chemokines, induction of tissue factor and of metalloproteinases. Platelet-associated CD154 is also involved in platelet/platelet interactions during platelet aggregation. Furthermore, in vivo models have emphasized the critical role of the platelet-associated CD154 in the progression of atherosclerotic disease and in the stabilization of arterial thrombi. Recent data show that CD40-bearing cells involved in fibrosis such as hepatic stellate cells and glomerular mesangial cells also respond to platelet-associated CD154, thus suggesting a new mechanism by which platelets may be instrumental in the inflammatory diseases of the liver or the kidney. Finally, platelet-associated CD154 has been shown to have immune competence both in vitro and in vivo, observations that open new fields of research on the potential implications of platelets in the immune response and auto-immune diseases.  相似文献   

2.
Characterization of the platelet agglutinating activity of thrombospondin   总被引:6,自引:0,他引:6  
Thrombospondin (TSP) is a glycoprotein secreted from the alpha-granules of platelets upon activation. In the presence of divalent cations, the secreted protein binds to the surface of the activated platelets and is responsible for the endogenous lectin-like activity associated with activated platelets. Platelets fixed with formaldehyde following activation by thrombin are agglutinated by exogenously added TSP. Fixed, nonactivated platelets are not agglutinated. The platelet agglutinating activity of TSP is optimally expressed in the presence of 2 mM each of Mg2+ and Ca2+. Reduction of the disulfide bonds within the TSP molecule inhibits its platelet agglutinating activity. TSP bound to the surface of fixed, activated platelets can be eluted by the addition of disodium ethylenediaminetetraacetate. This approach was exploited to identify the region of the TSP molecule containing the platelet binding site. The binding site resides within a thermolytic fragment of TSP with Mr 140 000 but is not present in the Mr 120 000 fragment derived from the polypeptide of Mr 140 000. Since both the Mr 140 000 and 120 000 fragments contain fibrinogen binding sites, this finding suggests that the binding of TSP to the platelet surface requires interaction with other platelet surface components in addition to fibrinogen. The observation that fibrinogen only partially inhibits the TSP-mediated agglutination of fixed, activated platelets is consistent with this interpretation.  相似文献   

3.
GMP-140 binding to neutrophils is inhibited by sulfated glycans.   总被引:11,自引:0,他引:11  
GMP-140 is a 140-kDa granule membrane glycoprotein localized to the alpha-granules of platelets and the Weibel-Palade bodies of endothelial cells. Expression of GMP-140 on the activated cell surface has been shown to mediate the adhesion of thrombin-activated platelets to neutrophils and monocytes and the transient adhesion of neutrophils to endothelium. In contrast, fluid-phase GMP-140 strongly inhibits the CD18-dependent adhesion of tumor necrosis factor alpha-activated neutrophils to endothelium suggesting that GMP-140 can also serve an anti-adhesive function. In the present report, it is demonstrated that fluid-phase GMP-140 which exists predominantly as a tetramer binds to a single class of high affinity receptor on neutrophils and HL60 cells. Binding of 125I-labeled GMP-140 to neutrophils and HL60 cells and the rosetting of neutrophils and HL60 cells by thrombin-activated platelets were inhibited by EDTA, excess unlabeled fluid-phase GMP-140, Fab fragments of an affinity-purified rabbit anti-GMP-140 antibody, and by the murine anti-GMP-140 monoclonal antibody, AK 4. Both neutrophil and HL60 GMP-140 binding and platelet rosetting were strongly inhibited by heparin, fucoidin, and dextran sulfate 500,000, were partially inhibited by dextran sulfate 5,000 and lambda- and kappa-carrageenan, but were not inhibited by chondroitins 4- and 6-sulfate. Since this sulfated glycan specificity is identical to that previously reported by us for GMP-140, the present results suggest that the sulfated glycan binding site and the neutrophil receptor binding site on GMP-140 are either identical or proximal.  相似文献   

4.
5.
The platelet receptor for von Willebrand factor (VWF), glycoprotein (GP) Ib-IX, mediates initial platelet adhesion and activation. It is known that the cytoplasmic domain of GPIbbeta is phosphorylated at Ser(166) by cAMP-dependent protein kinase (PKA). To understand the physiological role of GPIbbeta phosphorylation, a GPIb-IX mutant replacing Ser(166) of GPIbbeta with alanine (S166A) and a deletion mutant lacking residues 166-181 of GPIbbeta (Delta165) were constructed. These mutants, expressed in Chinese hamster ovary (CHO) cells, showed an enhanced VWF-binding function compared with wild type GPIb-IX. Treatment of CHO cells expressing wild type GPIb-IX with a PKA inhibitor, PKI, reduced Ser(166) phosphorylation and also enhanced VWF binding to GPIb-IX. Furthermore, cells expressing S166A or Delta165 mutants showed a significantly enhanced adhesion to immobilized VWF under flow conditions. Consistent with the studies in CHO cells, treatment of platelets with PKI enhanced VWF binding to platelets. In contrast, a PKA stimulator, forskolin, reduced VWF binding and VWF-induced platelet agglutination, which was reversed by PKI. Thus, PKA-mediated phosphorylation of GPIbbeta at Ser(166) negatively regulates VWF binding to GPIb-IX and is one of the mechanisms by which PKA mediates platelet inhibition.  相似文献   

6.
Platelet glycoprotein (GP) Ib/IX/V complex is a receptor for von Willebrand factor (vWf), which plays a crucial role in primary hemostasis by mediating platelet adhesion to injured blood vessels. We have expressed in CHO cells a fragment of GPIba that retained a vWf-binding function. The recombinant fragment (rGPIba) was incorporated into liposomes and evaluated their functions in vitro. rGPIba on the liposome surface was detectable by flow cytometric analysis. Addition of vWf and ristocetin caused specific agglutination of rGPIbalpha-liposomes, as evaluated by an aggregometer or a fluorescent microscopy. When ristocetin was added to platelet-rich plasma (PRP) pre-mixed with rhodamine-labeled rGPIbalpha-liposomes, platelets aggregated and rhodamine-fluorescence was strongly positive in the platelet thrombi, suggesting that heterologous aggregation (attachment of liposomes to platelets) occurred. Platelet aggregation in PRP at low platelet concentration (20-80 x 10(6)/ml) was enhanced by rGPIbalpha-liposomes in a dose-dependent manner. Thus, rGPIbalpha-liposomes may accumulate on vWf-exposed subendothelial tissues and enhance platelet function in vivo, supporting hemostasis in thrombocytopenic individuals.  相似文献   

7.
Endothelial cells synthesize and secrete von Willebrand factor (VWF) multimers, including unusually large forms (ULVWF), which are usually cleaved into smaller multimers found in normal plasma (P-VWF). Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic disorder characterized by systemic attachment of platelets to inadequately cleaved ULVWF multimers. We have compared ULVWF and P-VWF in their capacity to become immobilized onto surfaces in vitro and their ability to mediate platelet adhesion. We have also used functional assays to directly compare ULVWF forms with purified P-VWF in mediating platelet aggregation in solution. At comparable concentrations, ULVWF is more effectively adsorbed onto glass surfaces than P-VWF and supports increased platelet adhesion. ULVWF is also significantly more potent than P-VWF in mediating both shear-induced platelet aggregation and ristocetin-mediated platelet agglutination.  相似文献   

8.
In this work we checked the hypothesis whether estrone, progesterone, and testosterone are able to modulate the interactions between platelets, monocytes, and endothelial cells either under basal or inflammatory conditions. Using adhesion assays we demonstrated that pretreatment of endothelial cells with estrone, progesterone, or testosterone prevented monocytes and platelets adhesion induced by the proinflammatory agent bacterial lipopolysaccharide. The hormones reduced the expression of mRNA of ICAM-1, VCAM-1, and P-selectin, endothelial surface proteins that mediate monocytes and platelets adhesion respectively. Integrins are the main leukocyte proteins that allow firm adhesion. Using flow cytometry we showed that estrone treatment of monocytes reduced CD11b and CD11c expression, either under basal or injury (lipopolysaccharide) conditions. The three steroids inhibited platelet aggregation in a nitric oxide dependent manner. Platelet function was not affected by the steroid treatment. The molecular mechanisms of action exerted by the steroids included the participation of the intracellular signaling pathways PKC, MAPK, and PI3K, which selectively and differentially mediate the stimulation of nitric oxide release. We evidence that estrone, progesterone, and testosterone modulate monocyte and platelet adhesion to endothelial cells, events that play a major role in the initiation and progression of vascular lesions. The steroid action was evidenced under basal or inflammatory conditions. The mechanisms of action exerted by the steroids included stimulation of nitric oxide production and the participation of PKC, MAPK, and PI3K systems.  相似文献   

9.
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.  相似文献   

10.
作为血液中最小的无核血细胞,血小板除具有经典的止凝血功能外,在调节固有免疫和适应性免疫方面也发挥着重要作用。但是,对于血小板参与免疫调节的分子机制,目前研究相对较少。通过给小鼠腹腔注射热灭活的大肠杆菌构建了急性炎症模型,并借助血常规、流式细胞术等实验方法检测了炎症条件下腹腔免疫细胞以及外周血细胞的动态变化。研究发现,在感染早期小鼠外周血中性粒细胞能快速迁移至腹腔参与炎症反应,同时,血小板的数目和大小在感染早期也会发生显著变化。进一步的RNA-Seq分析发现,小鼠血小板的转录组在感染后发生显著改变,其中,免疫反应相关基因显著上调,血小板表面黏附分子的表达也显著增强。研究结果揭示了急性炎症条件下血小板转录组的变化,为了解血小板免疫功能的潜在分子机制提供了新的角度。  相似文献   

11.
K Handa  Y Igarashi  M Nisar  S Hakomori 《Biochemistry》1991,30(50):11682-11686
GMP-140 (CD62 or PADGEM), a member of the selectin family, is a membrane glycoprotein in secretory granules of platelets and endothelial cells. When these cells are activated by agonists such as thrombin or AMP, GMP-140 is rapidly redistributed to the cell surface. The carbohydrate epitope defined by GMP-140 was identified as sialosyl-Le(x) (as for ELAM-1), which may play an essential role in adhesion of leukocytes or tumor cells on endothelial cells, through aggregation with platelets. Redistribution of GMP-140 from alpha-granules of platelets to the cell surface, induced by thrombin and PMA, was strongly inhibited by preincubation of platelets with N,N-dimethylsphingosine (DMS) or N,N,N-trimethylsphingosine (TMS) at 10-20 microM concentration for a brief period (5 min). Inhibition of GMP-140 redistribution to the cell surface by DMS or TMS was also detected by a cell adhesion assay using HL60 cells, which highly express sialosyl-Le(x); i.e., HL60 cells adhered on platelets activated by thrombin or PMA but not on platelets which were briefly preincubated with DMS or TMS followed by activation. The inhibitory effect of DMS or TMS on GMP-140 redistribution is not due to cytotoxicity, since the TMS-treated platelets were fully capable of aggregating in the presence of ristocetin. Sphingosine (SPN) and protein kinase C inhibitors such as H-7 and calphostin C showed weaker inhibitory activity than DMS and TMS. Our results indicate that both DMS and TMS could be useful reagents to inhibit cell surface expression of crucial selectins which promote adhesion of Le(x-) or sialosyl-Le(x)-expressing cells with platelets and endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During platelet secretion granule membrane glycoproteins are translocated to the plasma membrane. We report here the biochemical and immunohistochemical characterization of a panel of platelet-secretion-specific, CD62 and CD63 monoclonal antibodies (MoAb), which we raised to thrombin-activated platelets. The CD62 MoAb identify the alpha-granule membrane protein GMP-140, also designated platelet activation-dependent granule external membrane protein (PADGEM). The number of epitopes on thrombin-activated platelets ranged from 15,000 to 20,000. The CD63 MoAb recognize a 30-60 kDalton integral membrane protein of lysosomes. Due to its distinct localization, we have designated the CD63 antigen lysosome integral membrane protein, CD63 (LIMP-CD63). The number of epitopes on thrombin-activated platelets ranged from 9000 to 11,000. Expression of GMP-140, a member of the Selectin family (also referred as the LEC-CAM family) of adhesion molecules, and LIMP-CD63 was examined on human spleen, thymus and lymph node by immunohistochemistry. Both GMP-140 and LIMP-CD63 showed a wide distribution in lymphoid tissues; vascular endothelial cells and tissue compartments that were readily accessible to blood-borne components were uniformly positive for GMP-140 and LIMP-CD63. Furthermore, LIMP-CD63 was expressed in polymorphonuclear granulocytes and macrophages.  相似文献   

13.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

14.
Leukocyte transendothelial migration and sequestration are two distinct outcomes following leukocyte adhesion to endothelium during ischemia-reperfusion injury, in which platelets may play a pivotal role. In the present study, we established an in vitro hypoxia-reoxygenation model to mimic ischemia-reperfusion injury and found platelet pre-incubation significantly increased leukocyte adhesion to endothelial cells after hyoxia-reoxygenation (over 67%). Blockade of endothelial-cell-expressed adhesion molecules inhibited leukocyte direct adhesion to endothelial cells, while platelet-mediated leukocyte adhesion was suppressed by blockade of platelet-expressed adhesion molecules. Further experiments revealed platelets acted as a bridge to mediate leukocyte adhesion, and platelet-mediated adhesion was the predominant pattern in the presence of platelets. However, platelet pre-incubation significantly suppressed leukocyte transendothelial migration after hypoxia-reoxygenation (over 31%), which could be aggravated by blockade of endothelial-cell-expressed adhesion molecules, but alleviated by blockade of platelet- expressed adhesion molecules. This would indicate that platelet-mediated adhesion disrupted leukocyte transendothelial migration. An in vivo mesenteric ischemia-reperfusion model demonstrated leukocyte transfusion alone caused mild leukocyte adhesion to reperfused vessels and subsequent leukocyte infiltration, while simultaneous leukocyte and platelet transfusion led to massive leukocyte adhesion and sequestration within reperfused microvessels. Our studies revealed platelets enhanced leukocyte adhesion to endothelial cells, but suppressed leukocyte transendothelial migration. Overall, this leads to leukocyte sequestration in hypoxia-reoxygenated microvessels.  相似文献   

15.
A monoclonal antibody, P1H5, to the human fibroblast class II extracellular matrix receptor (ECMR II) specifically inhibits human fibroblast adhesion to collagen and immunoprecipitates a cell surface receptor containing an alpha and beta subunit of approximately 140 kilodaltons each (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). We report here that P1H5 also specifically inhibits adhesion of unactivated human platelets to type I and III collagens, but not to fibronectin. Immunoprecipitation of the class II ECMR from Triton X-100 detergent lysates of platelets, after cell surface iodination, identified the platelet collagen receptor. Peptide mapping confirmed that the II alpha and II beta subunits immunoprecipitated from platelets are structurally homologous with those derived from fibroblasts. The platelet ECMR II alpha and -beta subunits comigrate with platelet membrane glycoproteins Ia and IIa, respectively, on two-dimensional nonreduced-reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. These results indicate that platelet and fibroblast adhesion to collagen are both mediated by a similar receptor and that the alpha and beta subunits of this receptor are identical to platelet membrane glycoproteins Ia and IIa, respectively. Although glycoprotein Ia has been previously implicated as a collagen binding protein, our results are the first direct evidence that platelet glycoprotein Ia is associated with glycoprotein IIa in a heterodimer complex and that this complex, by mediating platelet attachment, is an actual receptor for platelet adhesion to collagen.  相似文献   

16.
M Peng  W Lu  E P Kirby 《Biochemistry》1991,30(49):11529-11536
A new protein, called alboaggregin-B (AL-B), has been isolated from Trimeresurus albolabris venom by ion-exchange chromatography. It agglutinated platelets without the need for Ca2+ or any other cofactor. The purified protein showed an apparent molecular mass on SDS-PAGE and gel filtration of about 23 kDa under nonreducing conditions. Ristocetin did not alter the binding of AL-B to platelets or affect AL-B-induced platelet agglutination. Agglutinating activity was not dependent on either proteolytic or lectin-like activity in AL-B. Binding analysis showed that AL-B bound to platelets with high affinity (Kd = 13.6 +/- 9.3 nM) at approximately 30,800 +/- 14,300 binding sites per platelet. AL-B inhibited the binding of labeled bovine von Willebrand factor (vWF) to platelets. Monoclonal antibodies against the 45-kDa N-terminal domain of platelet glycoprotein Ib inhibited the binding both of AL-B and of bovine vWF to platelets, and also inhibited platelet agglutination induced by AL-B and bovine vWF. Specific removal of the N-terminal domain of GPIb by treatment of the platelets with elastase or Serratia marcescens protease reduced the binding of labeled AL-B and bovine vWF to platelets and blocked platelet agglutination caused by both agonists. Monoclonal antibodies to glycoprotein IIb/IIIa, to bovine vWF, and to bovine serum albumin did not show any effect on the binding of AL-B to platelets. Our results indicate that the binding domain for AL-B on platelet GPIb is close to or identical with the one for vWF. This new protein may be a very useful tool for studying the interaction between platelets and vWF.  相似文献   

17.
The mechanisms of platelet adhesion to collagen type III-coated wells and Matrigel-coated wells were analyzed. The adhesion of 51Cr-labeled platelets to collagen-coated wells showed a biphasic pattern. The early stage of adhesion was inhibited by antibodies against platelet glycoprotein(GP)s Ia/IIa and VI. The later stage of platelet adhesion was inhibited by an antibody against the GPIIb/IIIa complex and a concomitant release of 14C-labeled serotonin was observed. The percentage of adhered platelets was increased when a higher platelet concentration was added in the reaction medium. These results indicated that the adhesion assay of platelets to collagen-coated wells was composed of two reactions: the first one is the platelet-collagen interaction that depends on GPIa/IIa and GPVI on the platelet surface; and the second reaction is the platelet-platelet interaction, platelet aggregation, which depends on GPIIb/IIIa. The adhesion of platelets to Matrigel-coated wells was indicated to involve platelet-Matrigel interactions that were partly dependent on the laminin in the Matrigel solution.  相似文献   

18.
M Sato  M Onohara  K Ookawa  N Ohshima 《Biorheology》1992,29(5-6):489-498
Platelet adhesion and aggregation were induced on cultured endothelial cells using the fluorescent dye/light method. A cone-and-plate apparatus was newly developed to observe interactions between platelets and cultured endothelial cells under a shear flow condition. The platelet deposition grew on the light-irradiated area of the cells. Degree of endothelial cell injury induced by the dye/light reaction seemed to depend on the dye concentration. Application of either aspirin or indomethacin significantly inhibited the growth of platelet aggregation, but was not effective for the platelet adhesion to endothelial cells. The platelet thrombi were formed on endothelial cells without their denudation. It was found by transmission electron microscopy that platelets directly adhered to endothelial cells which were not seriously damaged. This thrombus model is expected to be applicable to some physiological and pharmacological studies investigating platelet-endothelial cell interaction and mechanism of platelet thrombus formation in blood vessels.  相似文献   

19.
Aspirin is a common preventative therapy in patients at risk for cardiovascular diseases, yet little is known about how aspirin protects the vasculature in hypercholesterolemia. The present study determines whether aspirin, nitric oxide-releasing aspirin (NCX-4016), a selective cyclooxygenase (COX)-1 inhibitor (SC560), or genetic deficiency of COX-1 prevents the inflammatory and prothrombogenic phenotype assumed by hypercholesterolemic (HC) venules. Aspirin or NCX-4016 (60 mg/kg) was administered orally for the last week of a 2-wk HC diet. COX-1-deficient (COX-1(-/-)) and wild-type (WT) mice were transplanted with WT (WT/COX-1(-/-)) or COX-1(-/-) (COX-1(-/-)/WT) bone marrow, respectively. HC-induced adhesion of platelets and leukocytes in murine intestinal venules, observed with intravital fluorescence microscopy, was greatly attenuated in aspirin-treated mice. Adhesion of aspirin-treated platelets in HC venules was comparable to untreated platelets, whereas adhesion of SC560-treated platelets was significantly attenuated. HC-induced leukocyte and platelet adhesion in COX-1(-/-)/WT chimeras was comparable to that in SC560-treated mice, whereas the largest reductions in blood cell adhesion were in WT/COX-1(-/-) chimeras. NCX-4016 treatment of platelet recipients or donors attenuated leukocyte and platelet adhesion independent of platelet COX-1 inhibition. Platelet- and endothelial cell-associated COX-1 promote microvascular inflammation and thrombogenesis during hypercholesterolemia, yet nitric oxide-releasing aspirin directly inhibits platelets independent of COX-1.  相似文献   

20.
T Ohmori  Y Yatomi  Y Wu  M Osada  K Satoh  Y Ozaki 《Biochemistry》2001,40(43):12992-13001
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130K transmembrane glycoprotein that belongs to the immunoglobulin gene superfamily and is expressed on the surface of hematological or vascular cells, including platelets and endothelial cells. Although the importance of this adhesion molecule in various cell-cell interactions is established, its function in platelets remains ill-defined. In the process of clarifying the mechanism by which the lectin wheat germ agglutinin (WGA) activates platelets, we unexpectedly discovered that PECAM-1 is involved in signal transduction pathways elicited by this N-acetyl-D-glucosamine (NAGlu)-reactive lectin. WGA, which is a very potent platelet stimulator, elicited a rapid surge in Syk and phospholipase C (PLC)-gamma 2 tyrosine phosphorylation and the resultant intracellular Ca(2+) mobilization; collagen, as reported, induced these responses, but in a much slower and weaker manner. WGA strongly induced tyrosine phosphorylation of a 130-140K protein, which was confirmed to be PECAM-1 by immunoprecipitation and immunodepletion studies. WGA-induced PECAM-1 tyrosine phosphorylation occurred rapidly, strongly and in a manner independent of platelet aggregation or cell-cell contact; these characteristics of PECAM-1 phosphorylation were not mimicked at all by receptor-mediated platelet agonists. In addition, WGA was found to associate with PECAM-1 itself, and anti-PECAM-1 antibody, as well as NAGlu, specifically inhibited WGA-induced platelet aggregation. In PECAM-1 immunoprecipitates, Src family tyrosine kinases existed, and a kinase activity was detected, which increased upon WGA stimulation. Furthermore, the Src family kinase inhibitor PP2 inhibited WGA-induced platelet aggregation, Ca(2+) mobilization, and PLC-gamma 2 tyrosine phosphorylation. Finally, WGA induced PECAM-1 tyrosine phosphorylation and cytoskeletal reorganization in vascular endothelial cells. Our results suggest that (i) PECAM-1 is involved in WGA-induced platelet activation, (ii) PECAM-1 clustering by WGA activates unique and strong platelet signaling pathways, leading to a rapid PLC activation via Src family kinases, and (iii) WGA is a useful tool for elucidating PECAM-1-mediated signaling with wide implications not confined to platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号