首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

2.
Glutamate dehydrogenase (L-glutamate:NADP+ oxidoreductase [deaminating], EC 1.4.1.4) has been purified from Escherichia coli B/r. The purity of the enzyme preparation has been established by polyacrylamide gel electrophoresis, ultracentrifugation, and gel filtration. A molecular weight of 300,000 +/- 20,000 has been calculated for the enzyme from sedimentation equilibrium measurements. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium measurements in guanidine hydrochloride have revealed that glutamate dehydrogenase consists of polypeptide chains with the identical molecular weight of 50,000 +/- 5,000. The results of molecular weight determination lead us to propose that glutamate dehydrogenase is a hexamer of subunits with identical molecular weight. We also have studied the stability and kinetics of purified glutamate dehydrogenase. The enzyme remains active when heat treated or when left at room temperature for several months but is inactivated by freezing. The Michaelis constants of glutamate dehydrogenase are 1,100,640, and 40 muM for ammonia, 2-oxoglutarate, and reduced nicotinamide adenine dinucleotide phosphate, respectively.  相似文献   

3.
Growth conditions for Azospirillum brasilense Sp6 were devised for maximal expression of glutamate synthase. The enzyme levels were largely affected by the type and concentration of the nitrogen source. A 10-fold increase in the synthesis of the enzyme was observed at a limiting concentration of ammonia. The enzyme was purified to homogeneity by a procedure which was fairly rapid and allowed a good recovery of enzyme (30%). Azospirillum glutamate synthase is a complex iron-sulfur flavoprotein with a stoichiometry of 1 flavin adenine dinucleotide:1 flavin mononucleotide:8 Fe:8 S per protomer with a molecular weight of 185,000. The protomer is composed of two dissimilar subunits with molecular weights of 135,000 and 50,000. Kinetic parameters were determined. Km values for NADPH, 2-oxoglutarate, and L-glutamine were 6.25, 29, and 450 microM, respectively. The optimum pH was about 7.5. Complete reduction of the enzyme under anaerobic conditions was obtained either by NADPH (in the presence of a regenerating system) or dithionite or by photochemical reduction (in the presence of EDTA and 5-deazariboflavin). No stable long-wavelength intermediates were observed.  相似文献   

4.
Two glutamyl-tRNA reductase activities in Escherichia coli   总被引:12,自引:0,他引:12  
delta-Aminolevulinic acid (ALA) is the first committed precursor for tetrapyrrole biosynthesis. ALA formation in Escherichia coli occurs in a tRNA-dependent three-step conversion from glutamate. Glu-tRNA reductase is the key enzyme in this pathway. E. coli K12 contains two Glu-tRNA reductase activities which differ in their molecular weights. Here we describe the purification of one of these enzymes. Four different chromatographic separations yielded a nearly homogeneous protein. Its apparent molecular mass under denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation and gel filtration) is 85,000 +/- 5,000 Da. This indicates a monomeric structure for the active enzyme. Gel filtration and glycerol gradient centrifugation indicate that the other activity has a molecular mass of 45,000 +/- 5,000 Da. In the presence of NADPH both enzyme activities converted E. coli Glu-tRNA(2Glu) to glutamate 1-semialdehyde. Addition of GTP or hemin did not affect the reductase activity. Both enzymes display sequence-specific recognition of tRNA; E. coli Glu-tRNA(2Glu) is a good substrate while the Chlamydomonas reinhardtii, Bacillus subtilis, and Synechocystis Glu-tRNA(Glu) species are poorly recognized.  相似文献   

5.
Reduced pyridine nucleotide dependent glutamate synthase [L-glutamate: NADP+ oxidoreductase (transaminating); EC 1.4.1.13] was purified to homogeneity from Bacillus subtilis PCI 219. The molecular weight of the enzyme was 210,000, and the enzyme was composed of two nonidentical subunits with molecular weights of 160,000 and 56,000. The absorption and CD spectra of the enzyme indicated that the enzyme is an iron-sulfur flavoprotein. The enzyme was found to contain 1:1:7.4:8.7 mol of FMN, FAD, iron atoms, and acid-labile sulfur atoms per mol (MW 210,000). EPR measurements of the NADPH-reduced enzyme at 77K revealed the formation of a stable flavin semiquinone intermediate; however, none of the signals originating from the iron-sulfur cluster was observed. Still at 4.2K the EPR signals in the region of g = 2, which may originate from the paramagnetic iron-sulfur cluster, were clearly observed for both the isolated and dithionite-reduced states of the enzyme. The enzyme exhibited a wide coenzyme specificity, and either NADPH or NADH could be used as electron donor, although the latter was less effective. The enzyme activity was also expressed when ammonium chloride was substituted for L-glutamine. The optimum pHs for NADPH-Gln-, NADH-Gln-, and NADPH-NH3-dependent reactions were 7.8, 6.9, and 9.4, respectively. The apoenzyme exhibited substantial inactivation of the Gln-dependent activities but still retained the NH3-dependent activities. Enzyme reduction-oxidation experiments, initial velocity experiments, and product inhibition patterns revealed that both the NADPH-Gln- and NADH-Gln-dependent reactions coincided with the two-site ping-pong uni-uni bi-bi kinetic mechanism, while the NADPH-NH3-dependent reaction deviated from Michaelis-Menten kinetics. The Gln-dependent activities were inhibited by several TCA cycle members, especially L-malate and fumarate, as well as L-methionine-SR-sulfoximine, pyridoxal-5'-phosphate, and pCMB. The regulation of the glutamate synthase, glutamine synthetase [EC 6.3.1.2], and glutamate dehydrogenase [EC 1.4.1.3] activities was examined with cultures of cells grown with various nitrogen and carbon sources.  相似文献   

6.
In Euglena gracilis the terminal four enzyme activities of the tryptophan biosynthetic pathway were found to be associated with a protein with an estimated molecular weight of 325,000 +/- 20,000. The protein was purified approximately 2,000-fold with relatively proportional recoveries of all four enzyme activities. The purified material was homogeneous by the criteria of analytical disc gel electrophoresis and gel isoelectric focusing. Disc gel electrophoresis after denaturation with sodium dodecyl sulfate gave a single protein band with a molecular weight of 155,000 +/- 5,000. Disc gel electrophoresis in 8 M urea also gave rise to a single protein band. We interpret these results as evidence for a single species of subunit. The pathway in Euglena is the only one known to the present in which the terminal enzyme, tryptophan synthase, is not a separate molecular species.  相似文献   

7.
Glulamale synthase (EC 1.4.1. 14) was purified to homogeneity from 8 cell-free extract ofStreptomyces lincolnensis by precipitation with streptomycin sulfate and ammonium sulfate, and column chromatography on DEAE cellulose, Sepharose 6B, DEAE-sephadex A-50, hydruxyapatite and Sephadex G-150. The enzyme activity is stabilized by addition of α-ketoglutarate, PMSF, EDTA, β-mercaptoethanol and glycerol. The native enzyme has a molecular weight of 138 000 and is composed of two nonidentical subunits with molecular weights of 81 000 and 57 000. Spectroscopic exarnination of the enzyme gave absorption maximum at 280 and none at 380 and 440 nm, indicating the absence of iron and flavin. The enzyme shows optimum activity at pH 7.2 and 30°C. Km values for α-ketoglutarate, L-glutamine and NADH were 417, 435, and 52.1 μmol/L, respectively. When NADPH was substituted lor NADH as reductant, there was approximately 13% of the control activity. The activity of this glutamate synthase is inhibited by its products (i.e. glutamare and NAD), several metal ions, amino acids and tricarboxylic acid cycle intermediates.  相似文献   

8.
Chorismatic synthase was purified to apparent homogeneity from Bacillus subtilis. The enzyme required NADPH-dependent flavin reductase, Mg2+, NADPH, and flavin (FMN or FAD) for activity. The molecular weight of chorismate synthase was 24,000 as determined by sodium dedecyl sulfate (SDS)-gel electrophoresis. The enzyme was also isolated in a complex form associated with NADPH-dependent flavin reductase and another enzyme of the aromatic amino acid pathway, dehydroquinate synthase. On SDS-gel electrophoresis, this form was resolved into three bands with molecular weights of 13,000, 17,000, and 24,000. The enzyme complex was easily dissociated and the dissociation resulted in a change in the chromatographic properties of NADPH-dependent flavin reductase which was no longer retained on phosphocellulose whereas chorismate synthase was still adsorbed. Chorismate synthase activity was linear with time and protein concentration, whereas partially purified preparations showed a significant lag period before the reaction took place. Moreover, crude or partially purified enzyme preparations were completely inactivated by dilution and the activity could be recovered by addition of flavin reductase. A possible role of NADPH-dependent flavin reductase in the activation and regulation of chorismate synthase activity is discussed.  相似文献   

9.
Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.  相似文献   

10.
Glutamate synthase from Escherichia coli K-12 exhibits NH3-dependent activity. NH3-dependent activity is increased approximately 5-fold in apoglutamate synthase lacking flavin and non-heme iron. Whereas glutamine plus 2-oxoglutarate have the capacity to reoxidize the chemically reduced flavoenzyme, no such reoxidation is obtained with 2-oxoglutarate plus NH3. These results establish that the glutamine- and NH3-dependent syntheses of glutamate occur by different pathways of electron transfer from NADPH. The NH3-dependent activity of native and apoglutamate synthase exhibits similar catalytic properties. Some properties of apoglutamate synthase are similar to those of glutamate dehydrogenase. These properties include pH optima for synthesis and oxidative deamination of glutamate, inactivation by alkylating reagents and p-mercuribenzoate, an enhanced rate of inactivation by alkylating reagents and p-mercuribenzoate at low pH, 2-oxoglutarate protection against inactivation by p-mercuribenzoate, and reactivation of p-mercuribenzoate-treated enzyme by 2-mercaptoethanol. 2-Oxoglutarate protects against alkylation of glutamate synthase by iodo [1-14C]acetamide and reduces incorporation of methyl [1-14C]carboxamide into the small subunit of the enzyme.  相似文献   

11.
Glutamate synthase (EC 1 4 1 14) was purified to homogeneity from a cell\|free extract of Streptomyces lincolnensis by precipitation with streptomycin sulfate and ammonium sulfate, and column chromatography on DEAE\| cellulose, Sepharose 6B, DEAE\|sephadex A\|50, hydroxyapatite and Sephadex G\|150. The enzyme activity is stabilized by addition of α ketoglutarate, PMSF,EDTA, β mercaptoethanol and glycerol. The native enzyme has a molecular weight of 138 000 and is composed of two nonidentical subunits with molecular weights of 81 000 and 57 000. Spectroscopic examination of the enzyme gave absorption maximum at 280 and none at 380 and 440 nm, indicating the absence of iron and flavin. The enzyme shows optimum activity at pH 7.2 and 30℃. Km values for α ketoglutarate, L\|glutamine and NADH were 417, 435, and 52.1 μmol/L, respectively. When NADPH was substituted for NADH as reductant, there was approximately 13% of the control activity. The activity of this glutamate synthase is inhibited by its products (i.e. glutamate and NAD), several metal ions, amino acids and tricarboxylic acid cycle intermediates.  相似文献   

12.
S T Olson  V Massey 《Biochemistry》1979,18(21):4714-4724
A pyridine nucleotide independent D-lactate dehydrogenase has been purified to apparent homogeneity from the anaerobic bacterium Megasphaera elsdenii. The enzyme has a molecular weight of 105 000 by sedimentation equilibrium analysis with a subunit molecular weight of 55 000 by sodium dodecyl sulfate gel electrophoresis and is thus probably a dimer of identical subunits. It contains approximately 1 mol of FAD and 1 g-atom of Zn2+ per mol of protein subunit, and the flavin exhibits a fluorescence 1.7 times that of free FAD. An earlier purification [Brockman, H. L., & Wood, W. A. (1975 J. Bacteriol. 124, 1454--1461] results in substantial loss of the enzyme's zinc, which is required for catalytic activity. The new purification yields greater than 5 times the amount of enzyme previously isolated. The enzyme is specific for D-lactate, and no inhibition is observed with L-lactate. Surprisingly, the enzyme has a significant oxidase activity, which depends on the ionic strength. Vmax values of 190 and 530 min-1 were obtained at a gamma/2 of 0.224 and 0.442, respectively. Except for this atypically high oxygen reactivity, D-lactate dehydrogenase resembles other flavoenzyme dehydrogenases in that the flavin does not react with sulfite, the tryptophan content is low, and a neutral blue semiquinone is formed upon photochemical reduction. The enzyme flavin is reduced either by dithionite, by oxalate plus catalytic 5-deazaflavin in the presence of light, or by D-lactate. Two electrons per flavin were consumed in a dithionite titration, implyine with varying ratios of D-lactate and pyruvate, an Em7 of -0.219 +/- 0.007 V at 20 degrees C was calculated for the flavin. The enzyme requires dithiothreitol for stability. Rapid inactivation results when the enzyme is incubated with a substoichiometric level of Cu2+. This inactivation can be reversed by dithiothreitol. It is proposed that the enzyme possesses a pair of cysteine residues capable of facile disulfide formation.  相似文献   

13.
L-Glutamic acid decarboxylase (GAD; EC 4.1.1.15) was purified to apparent homogeneity from the brain of the locust Schistocerca gregaria using a combination of chromatofocusing (Mono P) and gel filtration (Superose 12) media. The homogeneity of the enzyme preparation was established by native polyacrylamide gel electrophoresis (PAGE) with silver staining. The molecular weight of the purified enzyme was estimated from native gradient gel electrophoresis and gel filtration chromatography to be 97,000 +/- 4,000 and 93,000 +/- 5,000, respectively. When analysed by sodium dodecyl sulphate-PAGE, the enzyme was found to be composed of two distinct subunits of Mr 51,000 +/- 1,000 and 44,000 +/- 1,500. Tryptic peptide maps of iodinated preparations of these two subunits showed considerable homology, suggesting that the native enzyme is a dimer of closely related subunits. The purified enzyme had a pH optimum of 7.0-7.4 in 100 mM potassium phosphate buffer and an apparent Km for glutamate of 5.0 mM. The enzyme was strongly inhibited by the carbonyl-trapping reagent aminooxyacetic acid with an I50 value of 0.2 microM.  相似文献   

14.
Ravasio S  Curti B  Vanoni MA 《Biochemistry》2001,40(18):5533-5541
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308].  相似文献   

15.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

16.
The oxidation of F420H2 (reduced coenzyme F420) is a key reaction in the final step of methanogenesis. This step is catalyzed in Methanolobus tindarius by the membrane-bound F420H2-dehydrogenase which was purified 31-fold to apparent homogeneity. The apparent molecular mass of the native enzyme was 120 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of five different subunits of apparent molecular masses of 45 kDa, 40 kDa, 22 kDa, 18 kDa and 17 kDa. The purified F420H2-dehydrogenase, which was yellowish, contained 16 +/- 2 mol iron and 16 +/- 3 mol acid-labile sulfur/mol enzyme. No flavin could be detected. The oxygen-stable enzyme catalyzed the oxidation of F420H2 (apparent Km = 5.4 microM) with methylviologen and metronidazole as electron acceptors at a specific rate of 13 mumol.min-1.mg-1 (kcat = 25.5 s-1). The isoelectric point was at pH 5.0. The temperature optimum was at 37 degrees C and the pH optimum at 6.8.  相似文献   

17.
The properties of the recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC6803 were determined by means of kinetic and spectroscopic approaches in comparison to those exhibited by the bacterial NADPH-dependent enzyme form. The ferredoxin-dependent enzyme was found to be similar to the bacterial glutamate synthase alpha subunit with respect to cofactor content (one FMN cofactor and one [3Fe-4S] cluster per enzyme subunit), overall absorbance properties, and reactivity of the FMN N(5) position with sulfite, as expected from the similar primary structure of ferredoxin-dependent glutamate synthase and of the bacterial NADPH-dependent glutamate synthase alpha subunit. The ferredoxin- and NADPH-dependent enzymes were found to differ with respect to the apparent midpoint potential values of the FMN cofactor and of the [3Fe-4S] cluster, which are less negative in the ferredoxin-dependent enzyme form. This feature is, at least in part, responsible for the efficient oxidation of L-glutamate catalyzed by this enzyme form, but not by the bacterial NADPH-dependent counterpart. At variance with earlier reports on ferredoxin-dependent glutamate synthase, in the Synechocystis enzyme the [3Fe-4S] cluster is not equipotential with the flavin cofactor. The present studies also demonstrated that binding of reduced ferredoxin to ferredoxin-dependent glutamate synthase is essential in order to activate reaction steps such as glutamine binding, hydrolysis, or ammonia transfer from the glutamine amidotransferase site to the glutamate synthase site of the enzyme. Thus, ferredoxin-dependent glutamate synthase seems to control and coordinate catalytic activities taking place at its subsites by regulating the reactions of the glutamine amidotransferase site. Association with reduced ferredoxin appears to be necessary, but not sufficient, to trigger the required activating conformational changes.  相似文献   

18.
Suzuki A  Gadal P 《Plant physiology》1982,69(4):848-852
Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) from rice leaves (Oryza sativa L. cv Delta) was purified 206-fold with a final specific activity of 35.9 mumoles glutamate formed per min per milligram protein by a procedure including ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephacryl S-300 gel filtration, and ferredoxin-Sepharose affinity chromatography. The purified enzyme yielded a single protein band on polyacrylamide gel electrophoresis. Molecular weight of the native enzyme was estimated to be 224,000 daltons by Sepharose 6B gel filtration. Electrophoresis of the dissociated enzyme in sodium dodecyl sulfate-polyacrylamide gel gave a single protein band which corresponds to the subunit molecular weight of 115,000 daltons. Thus, it is concluded that the glutamate synthase is composed of two polypeptidic chains exhibiting the same molecular weight. Spectrophotometric analysis indicated that the enzyme is free of iron-sulfide and flavin. The pH optimum was 7.3. The enzyme had a negative cooperativity (Hill number of 0.70) for glutamine, and its K(m) value increased from 270 to 570 mum at a glutamine concentration higher than 800 mum. K(m) values for alpha-ketoglutarate and ferredoxin were 330 and 5.5 mum, respectively. Asparagine and oxaloacetate could not be substituted for glutamine and alpha-ketoglutarate, respectively. Enzyme activity was not detected with pyridine nucleotides as electron donors. Azaserine and several divalent cations were potent inhibitors. The purified enzyme was stabilized by dithiothreitol.  相似文献   

19.
1. Dinitrophenylation of 2 +/- 0.2mol of residues/mol of enzyme-bound FMN resulted in the complete inactivation of the flavoenzyme L-lactate oxidase. 2. Hydrolysates of the inactivated enzyme contained 1mol each of Nim-Dnp-histidine (abbreviation: Dnp-,2,4-dinitrophenyl-; Nim indicates that either of the N atoms in the imidazole ring is substituted) and epsilon-Dnp-lysine/mol of FMN. 3. Competitive inhibitors decreased the extent of inactivation to a 10% loss of activity, and dinitrophenylation was decreased from 2 to approx. 0.5mol/mol of FMN. Only Nim-Dnp-histidine was detected in the hydrolysates. 4. Although the dinitrophenylated enzyme did not possess enzyme activitiy, L-lactate reduced approx. 50% of the enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme formed a complex with bisulphite. 6. The modified enzyme (2mol of Dnp/mol of FMN) was unable to bind substrate analogues and competitive inhibitors.  相似文献   

20.
The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains two different glutamate synthases whose genes, gltB and glsF (previously known as gltS), have been cloned (F. Navarro et al., 1995, Plant Mol. Biol. 27, 753-767). The glsF gene has been expressed in the glutamate auxotrophic Escherichia coli strain CLR207 RecA, but the corresponding protein does not complement the auxotrophy. The transformed strain showed ferredoxin-dependent glutamate synthase (Fd-GOGAT) activity, demonstrating the capability of E. coli for providing and correctly assembling both the iron-sulfur center and the flavin cofactor of the enzyme. Fd-GOGAT (GlsF) is correctly cleaved at Cys37 to form the mature enzyme in E. coli, as occurs with the large subunit of its own NADPH-GOGAT. The recombinant Fd-GOGAT has been purified to electrophoretic homogeneity, using as the main purification step a ferredoxin-affinity chromatography. The pure enzyme, with a molecular mass of about 180 kDa, shows an absorption spectrum characteristic of iron-sulfur flavoproteins. The analyses of the prosthetic groups indicate that Fd-GOGAT contains only one FMN, but no FAD, and one [3Fe-4S](+,0) cluster per molecule. Oxidation-reduction titration, using absorbance changes of the FMN group in the visible region, gave a midpoint redox potential of -200 +/- 25 mV at pH 7.5. The recombinant enzyme is strictly ferredoxin-dependent and shows apparent K(M) values similar to those of the native Synechocystis protein: 4.5 vs 3.5 microM, 2.2 vs 2.5 mM, and 0.6 vs 0.5 mM for ferredoxin, glutamine, and 2-oxoglutarate, respectively. The addition of the reductant dithionite to the enzyme resulted in the loss of the absorption peak at 436 nm, characteristic of oxidized flavins, which was restored by the anaerobic addition of 2-oxoglutarate, in the presence of glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号