首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cytochalasin-B (Cyt-B) was tested for its effect on cell division and vacuole formation in Tetrahymena. Little effect was found on cell division in the synchronous cell system in concentrations up to 37 μg/ml; however, slight delay was caused by 71 μg/ml. As measured by particle uptake, much lower concentrations, 7–8 μg/ml, caused significant inhibition of vacuole formation in exponentially multiplying and in starved cells, 16.6 or 37 μg/ml caused strong inhibition. This effect was immediate and completely reversible. The presence of Cyt-B caused starvation of Tetrahymena. The essential absence of inhibition of cell division by Cyt-B may reflect that the drug can enter the cell only by way of vacuoles.  相似文献   

2.
Inhibition of mycoplasma cell division by cytochalasin B   总被引:3,自引:0,他引:3  
A Ghosh  J Maniloff  D A Gerling 《Cell》1978,13(1):57-64
Mycoplasma gallisepticum has subcellular organelles which may function as a primitive "mitotic-like" apparatus. To investigate these further, we have studied the effects of cytochalasin B (CB) on M. gallisepticum. We found that CB inhibits cell division; this is the only procaryote thus far reported to be inhibited by CB. CB does not inhibit glucose or macromolecule precursor uptake. It stops cellular DNA synthesis, however, although RNA and protein synthesis continue (at a reduced rate). CB removal results in a resumption of DNA synthesis, followed by cell division. There appears to be some degree of cell synchrony in this first division after CB removal. These results, together with morphological data, indicate that CB blocks at two points in the cell cycle: at the time "mitotic-like" structures are formed and at the time of cell division. It is suggested that the CB blocks may result from a disruption of actin-like protein structures required at these points in the cell cycle.  相似文献   

3.
The effects of cytochalasin B (CB) on the interaction of sea urchin (Arbacia), molluscan (Spisula), and mammalian (Mus) gametes have been examined. Despite the absence of sperm incorporation and gamete membrane fusion, CB-treated Arbacia and Spisula eggs (1–10 μg/ml for 1–10 min) mixed with sperm activated. Unlike the situation observed in Arbacia and Spisula, mouse eggs treated with CB (1–50 μg/ml for 1 hr) are capable of sperm incorporation. These data are discussed with reference to possible mechanisms by which sperm may induce eggs to activate.  相似文献   

4.
The mode of action of cytochalasin B was examined in vitro using bile canaliculus-enriched plasma membrane fractions isolated from rat liver. The pericanalicular microfilaments, which are mainly actin filaments and which are normally attached to the canalicular membranes, were dissociated from the membranes by cytochalasin B treatment. A microfilamentous network was found in the supernate of the cytochalasin B treatment. A microfilamentous network was found in the supernate of the cytochalasin-treated specimens and a number of polypeptides, of which a polypeptide corresponding in molecular weight to actin was a notable member. These results suggest that actin filaments become detached from the canaliculus membranes by cytochalasin B.  相似文献   

5.
6.
Mitotic spindle inhibitors (colchicine, vinblastine, vincristine, 020, ethanol) and cytochalasin B inhibit the phagocytosis of colloid by thyroid cells and the secretion of thyroid hormones. This inhibition has been linked to interferences with the microtubular microfilament system of the follicular cell. In order to test the possibility of using such inhibitors to selectively block secretion, the action of suppressing or highly inhibitory concentrations on other metabolic parameters has been studied on dog thyroid slices in vitro: glucose oxidation, lactate formation, iodide binding to protein, cyclic 3'5' AMP accumulation. It is shown that at a concentration of 10 mM colchicine is entirely non specific as it greatly inhibits all facets of metabolism and all the stimulatory effects of cyclic 3'5' AMP and thyrotropin. The other mictrotubule inhibitors, although affecting thyroid metabolism in various ways were more specified. The enhancement by vineblastine of glucose oxidation ald iodine binding to proteins suggests an activation of they thyroid H2O2 generating system. D2O on the other hand selectively inhibits secretion and the binding of iodide to proteins. Cytochalasin B, presumably by inhibiting hexose transport, decreased glycolysis and the uptake of iodide. However this effect cannot account for the complete inhibition of thyroid secretion.  相似文献   

7.
The amounts of actin and myosin in rabbit neutrophils expressed as micrograms/10(6) cells are 5.6 +/- 0.75 and 0.56 +/- 0.08, respectively. The average value of the total actin in rabbit neutrophils under unstimulated conditions is distributed between Triton X-100 soluble fraction (74 +/- 7%) and Triton X-100 insoluble fraction (26 +/- 3%). The Triton X-100 soluble and insoluble fractions will be referred to as the cytoplasmic and the cytoskeletal components. When the cells are stimulated by the chemotactic factor formyl-Met-Leu-Phe the amount of actin associated with the cytoskeleton increases to 73.7 +/- 6% of the total cell actin. This increase is rapid, dose-dependent and mediated through fMet-Leu-Phe receptors. Neither the time course of the response nor the dose-response curve is affected by the removal of calcium from the suspending medium. Calcium ions at concentrations greater than 10(-7) M added after Triton X-100 extraction dissociate actin from the cytoskeleton. Calcium at 1.9 microM added after Triton X-100 extraction reduces the amount of cytoskeletal actin under control and stimulated conditions to 10.3 +/- 0.9 and 33 +/- 1.5% of the total cell actin, respectively. The average value of the total myosin in rabbit neutrophils under unstimulated conditions is distributed between the cytosol (32 +/- 10%) and the cytoskeleton (68 +/- 18%). When neutrophils are stimulated with the chemotactic factor fMet-Leu-Phe the amount of myosin associated with the cytoskeleton does not increase significantly. Cytochalasin B decreases cytoskeletal actin and myosin and causes a shift in the amount of actin and myosin from the cytoskeleton to the cytoplasm both under fMet-Leu-Phe-stimulated and control conditions. In the presence of 1.6 mM extracellular Ca2+ and cytochalasin B (5 micrograms/ml) the amount of actin associated with the cytoskeleton under control and stimulated conditions is reduced to 13 +/- 2.2 and 10.2 +/- 3.5% of total cell actin, and that of myosin is reduced to 50.2 +/- 14 and 2.3 +/- 0.8% of the total cell myosin. The effect of cytochalasin B on actin does not depend on the time of its addition relative to that of fMet-Leu-Phe and is more pronounced in the presence of Ca2+. These results are discussed in terms of the roles of cytochalasin B and calcium in the overall mechanism of neutrophil degranulation induced by chemotactic factors.  相似文献   

8.
9.
Mouse blastomeres exposed to cytochalasin B (CB) at subsequent stages of cytokinesis become spherical within 5–15 min. This change of form is preceded by rapid constriction of the furrow and by shape changes in the nonfurrow region such as blebbing, surface expansion, and formation of additional constrictions. While rounding up of blastomeres is completed within a few minutes in CB, 0.5 hr is the minimal duration of treatment that prevents resumption of cytokinesis after removal from CB.  相似文献   

10.
The effects of various concentrations of cytochalasin B and colchicine on the polarization of odontoblasts and ameloblasts of mouse tooth buds cultivated in vitro, were studies. It was shown that cytochalasin B, deside its action on the microfilaments, had important cytotoxic effects; dilatation of the odontoblast's processus, accumulation of secretory granules in the Golgi apparatus, dilatation of mitochondria, inhibition of polarization or depolarization of odontoblasts and ameloblasts. These modifications resulted chiefly from the lesion of microtubules which seem to play an important role in the polarization of the cells studies.  相似文献   

11.
Cultured human glioma cells (138 MG) exposed to dibutyryl cyclic AMP (dbc-AMP; 0.1--5 mM) attained an arborized shape with thin processes extending from a rounded cell body. Cytochalasin B (CB; 1--1 muM) induced similar morphological changes. The processes in both dbc-AMP and CB treated cells were formed by retraction of the cell margin. Colchicine (1muM) completely and liver treated phalloidin (0.1 mg/ml) partially inhibited the morphological alterations induced by dbc-AMP and CB. Dbc-AMP was found to arrest cell movement, cell division and uptake of 2-deoxy-D-glucose. CB has the same effects but was more potent. The effects of dbc-AMP and CB could be due to interference with a common cellular structure, e.g. microfilaments.  相似文献   

12.
13.
Summary Blastomeres isolated from two-cell mouse embryos were cultured until they started to cleave. When the cleavage furrow developed they were subjected to cytochalasin B (CB) and were studied with the electron microscope. The initial response to CB is that the furrow is more folded and microvillous than in the control. Later the blastomeres round up. The protrusions covered with abundant long microvilli are found scattered within their equatorial surface. Extraction with glycerol solution before fixation permits visualization of condensations of felt-like filamentous material in contact with the cleavage furrow during the initial response to CB and in the protrusions of rounded cells. We consider clumping of filaments in surface protrusions to be a specific response to CB treatment of the contractile ring.Some of the previous papers by this author have been published under the name Opas  相似文献   

14.
The role of cytoplasmic microfilaments in the metabolism of low-density lipoprotein by human fibroblasts was studied with the aid of cytochalasin B. At concentrations of 5--40 nmol/ml cytochalasin increased the surface binding but decreased the endocytosis of 125I-labelled low-density lipoprotein. Subsequent studies indicated that these changes reflected a reduction of the rate of internalisation of low-density lipoprotein receptors. Independent inhibitory effects were also observed on low-density lipoprotein degradation and on the cellular release of the trichloroacetic acid-soluble degradation products.  相似文献   

15.
The loss of epidermal growth factor (EGF) binding activity on cultured murine 3T3 cells exposed to EGF (EGF receptor down regulation) was determined in colchicine treated cells, cytochalasin B treated cells, and untreated cells. Neither colchicine nor cytochalasin B altered the affinity of the receptor for EGF, but colchicine decreased maximal EGF binding activity by 20%. The maximal extent of EGF receptor down regulation was similar in colchicine treated cells and cytochalasin B treated cells, but the rate of receptor down regulation was higher in cytochalasin B treated cells. Cytoplasts produced by subjecting cytochalasin B treated cells adhering to the substratum to centrifugal force responded to EGF with nearly normal down regulation kinetics. The results suggest that the cytoskeleton is not obligatorily involved in EGF-induced EGF receptor down regulation.  相似文献   

16.
Effects of cytochalasin B on pancreatic acinar cell structure and secretion   总被引:4,自引:0,他引:4  
Summary The effects of cytochalasin B (CB) on pancreatic structure and amylase release were studied by use of pancreatic fragments, isolated acini and isolated acinar cells. In pancreatic fragments and isolated acini CB caused the disappearance of microfilaments underlying the apical plasma membrane, loss of apical microvilli and luminal swelling, the last of which was greatly enhanced by addition of protein secretagogues. CB had no effect on basal amylase release but inhibited bethanechol-stimulated amylase in both fragments and acini. Isolated acinar cells, while retaining overall polarity, had lost most of the apical specialization including the microfilament and microvillous complex. Cells were still able to release amylase in response to bethanechol but this release was not affected by CB. The only structural effect of CB on isolated cells was margination of zymogen granules against the plasma membrane. This was, however, not accompanied by increased amylase release. It is concluded that microfilaments are important in maintaining the pancreatic acinar structure. Interference with this structure by CB leads to inhibition of bethanechol-stimulated amylase release. Microfilaments, however, may not play a direct role in secretion.Supported by NIH grant GM-19998 from the United States Public Health Service. — We are indebted to Dr. John Heuser for advice throughout this project and assistance in the preparation of rapidly frozen acini, and to M. Lee for technical assistance  相似文献   

17.
We have investigated the effects of the drugs cytochalasin B and colchicine on the surface levels of the large, external, transformation-sensitive (LETS) glycoprotein. Colchicine neither removed LETS protein from the surface, nor inhibited its regeneration after removal by mild trypsinization. Cells treated with cytochalasin B, however, showed both a 2–3-fold increase in the turnover rate of their surface LETS protein and a marked inhibition in its regeneration. Inhibition of regeneration was not due to inhibition of synthesis or transport to the surface. In fact, in the presence of cytochalasin B, increased quantities of LETS protein were released into the medium. The results are consistent with the idea of an association of LETS protein with the actin-containing microfilaments. However, other possible explanations, such as effects on cellular morphology or on transport of sugar precursors cannot yet be excluded.  相似文献   

18.
Summary Coincident with an increase in the water permeability of toad urinary bladder induced by serosal hypertonicity, a transformation of the ridge-like surface structures of the granular cells into individual microvillous structures occurs. This study was initiated to establish whether the transformation is mediated by the cytoskeletal network and, thus, can be prevented by disruption of microtubulemicrofilament function with colchicine or cytochalasin B (CB). Scanning electron microscopy revealed the characteristic branching ridges on granular cells of control bladder incubated with colchicine or CB. In contrast, transformation of ridges to discrete microvilli was observed in experimental bladders exposed to serosal hypertonicity alone or in combination with either colchicine or CB. These results suggest that the mechanism underlying hypertonicity-induced surface changes which are associated with increased water permeability does not involve either microtubules or microfilaments.  相似文献   

19.
Summary In short-term cultures of rat hepatocytes, bile canaliculi enclosed between unseparated cell couplets are able to perform periodical contractions resulting in expulsion of bile. Pericanalicular cytoskeletal proteins are involved in canalicular contractility: F-actin, myosin and tropomyosin are associated around bile canaliculi, as revealed by staining with tetramethylrhodaminyl-phalloidin and by immunofluorescence. Bile canalicular contractility is distributed by cholestatic agents that are known to interfere with actin polymerization; e.g., phalloidin and also cytochalasin B inhibit canalicular contractility and cause pericanalicular vacuolization and formation of blebs. Whereas the association of the cytoskeletal proteins is not affected by treatment with cytochalasin B, treatment with phalloidin results in dissociation of F-actin and myosin, indicating that binding of phalloidin to F-actin impairs its molecular interaction with myosin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号