首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A heparan sulfate-rich proteoglycan is on the surface of NMuMG mouse mammary epithelial cells apparently intercalated into their plasma membranes. Mild treatment of the cells with trypsin releases the GAG-bearing region (ectodomain) of this molecule as a discrete proteoglycan which is readily purified. At physiological pH and ionic strength, the ectodomain binds collagen types I, III, and V but not types II, IV, or denatured type I. The proteoglycan binds to a single class of high affinity saturable sites on type I collagen fibrils, sites which are selective for heparin-like glycosaminoglycans. The binding of NMuMG cells to type I collagen duplicates that of their cell surface proteoglycan; cells bind to native but not denatured collagen, and binding is inhibited by heparin but not by other glycosaminoglycans. These binding properties suggest that cell surface heparan sulfate proteoglycans could act as receptors for interstitial collagens and mediate changes in cell behavior induced by collagenous matrices.  相似文献   

2.
Mouse mammary epithelial (NMuMG) cells produce both cellular and extracellular heparan sulfate-rich proteoglycans. A cellular proteoglycan, but no extracellular proteoglycans, associates quantitatively and vectorially with lipid vesicles, as assessed by column chromatography and centrifugation. This lipophilic cellular proteoglycan is extracted as an aggregate when cells are treated with 4 M guanidine HCl, but is extracted as a single component in the presence of detergent, suggesting that it aggregates with cellular lipid. An association with lipid is confirmed by intercalation of the proteoglycan into the bilayer of lipid vesicles. Formation of lipid vesicles in the presence of the proteoglycan causes the proteoglycan to have the chromatographic and sedimentation behavior of the vesicles while destruction of the vesicles with detergent nullifies this effect. The proteoglycan is intercalated nullifies this effect. The proteoglycan is intercalated into the vesicles with its glycosaminoglycan-containing domain exposed to the exterior since mild trypsin treatment quantitatively removes this portion of the proteoglycan from the vesicle. After cleavage from the vesicle, the released proteoglycan chromatographs with an apparent molecular size similar to that of the whole proteoglycan, but no longer aggregates with lipid. Thus, trypsin removes a lipophilic domain which is responsible for its interaction with lipid and presumably anchors the proteoglycan in cellular membranes.  相似文献   

3.
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product.  相似文献   

4.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

5.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

6.
Heparan sulfate proteoglycans are complex molecules composed of a core protein with covalently attached glycosaminoglycan chains. While the protein part determines localization of the proteoglycan on the cell surfaces or in the extracellular matrix, the glycosaminoglycan component, heparan sulfate, mediates interactions with a variety of extracellular ligands such as growth factors and adhesion molecules. Through these interactions, heparan sulfate proteoglycans participate in many events during cell adhesion, migration, proliferation and differentiation. We are determining the multitude of proteoglycan functions, as their intricate roles in many pathways are revealed. They act as coreceptors for growth factors, participate in signalling during cell adhesion, modulate the activity of a broad range of molecules, and partake in many developmental and pathological processes, including tumorigenesis and wound repair. This review concentrates on biological roles of cell surface heparan sulfate proteoglycans, namely syndecans and glypicans, and outlines the progress achieved during the last decade in unraveling the molecular interactions behind proteoglycan functions.  相似文献   

7.
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions.  相似文献   

8.
Cultured mouse mammary (NMuMG) cells produce heparan sulfate-rich proteoglycans that are found at the cell surface, in the culture medium, and beneath the monolayer. The cell surface proteoglycan consists of a lipophilic membrane-associated domain and an extracellular domain, or ectodomain, that contains both heparan and chondroitin sulfate chains. During culture, the cells release into the medium a soluble proteoglycan that is indistinguishable from the ectodomain released from the cells by trypsin treatment. This medium ectodomain was isolated, purified, and used as an antigen to prepare an affinity-purified serum antibody from rabbits. The antibody recognizes polypeptide determinants on the core protein of the ectodomain of the cell surface proteoglycan. The reactivity of this antibody was compared with that of a serum antibody (BM-1) directed against the low density basement membrane proteoglycan of the Englebarth-Holm-Swarm tumor (Hassell, J. R., W. C. Leyshon, S. R. Ledbetter, B. Tyree, S. Suzuki, M. Kato, K. Kimata, and H. Kleinman. 1985. J. Biol. Chem. 250:8098-8105). The BM-1 antibody recognized a large, low density heparan sulfate-rich proteoglycan in the cells and in the basal extracellular materials beneath the monolayer where it accumulated in patchy deposits. The affinity-purified anti-ectodomain antibody recognized the cell surface proteoglycan on the cells, where it is seen on apical cell surfaces in subconfluent cultures and in fine filamentous arrays at the basal cell surface in confluent cultures, but detected no proteoglycan in the basal extracellular materials beneath the monolayer. The amino acid composition of the purified medium ectodomain was substantially different from that reported for the basement membrane proteoglycan. Thus, NMuMG cells produce at least two heparan sulfate-rich proteoglycans that contain distinct core proteins, a cell surface proteoglycan, and a basement membrane proteoglycan. In newborn mouse skin, these proteoglycans localize to distinct sites; the basement membrane proteoglycan is seen solely at the dermal-epidermal boundary and the cell surface proteoglycan is seen solely at the surfaces of keratinocytes in the basal, spinous, and granular cell layers. These results suggest that although heparan sulfate-rich proteoglycans may have similar glycosaminoglycan chains, they are sorted by the epithelial cells to different sites on the basis of differences in their core proteins.  相似文献   

9.
The hydrophobic cell-surface proteoglycans of mouse mammary epithelial cells were purified by gel filtration, ion-exchange chromatography, and liposome incorporation. The size of the proteoglycans appeared to be directly proportional to the size of their heparan-sulfate chains, larger proteoglycans yielding larger chains. The chondroitin sulfate chains, in contrast, showed no size heterogeneity. Digestion of 125I-labeled proteoglycans with heparitin-sulfate lyase and chondroitin ABC lyase yielded core proteins of approximately 93 kDa, approximately 85 kDa and approximately 38 kDa. Comparison with single enzyme digestions identified the 93-kDa and 85-kDa cores as components of hybrid proteoglycans that carried both heparan-sulfate and chondroitin-sulfate chains. Immunoblotting indicated that the 93-kDa and 85-kDa cores shared the epitope defined by monoclonal antibody 281-2. The 38-kDa core, in contrast, carried only heparan-sulfate chains and lacked the 281-2 epitope. Preparations enriched in heparan sulfate or in heparan-sulfate/chondroitin-sulfate hybrid proteoglycans were obtained by N-desulfation and ion-exchange chromatography. Hybrid proteoglycans accounting for the bulk of the chondroitin-sulfate and nearly half of the heparan-sulfate residues of the proteoglycans showed a similar polydispersity of heparan-sulfate chain sizes as found in proteoglycans that carried only, or predominantly, heparan-sulfate chains. These hybrids contained heparan-sulfate and chondroitin-sulfate chains in similar molar amounts. Analysis of 125I-labeled proteoglycans suggested that typical hybrid proteoglycans were composed of a 85-kDa core protein that carries a single chondroitin-sulfate chain and a single heparan-sulfate chain of variable length. A minority of hybrids seemed characterized by the variant, but possibly structurally related, 93-kDa core protein. The other half of the hydrophobic proteoglycans were composed of the 38-kDa core and carried only heparan-sulfate chains. The significance of the co-existence of hybrid and heparan-sulfate proteoglycans at the cell surface and possible relationships between the proteoglycans need to be further clarified.  相似文献   

10.
11.
We generated a monoclonal antibody (Mab) against a large chondroitin sulfate proteoglycan (CSPG) isolated from bovine aorta. This Mab (941) immunoprecipitates a CSPG synthesized by cultured monkey arterial smooth muscle cells. The immunoprecipitated CSPG is totally susceptible to chondroitinase ABC digestion and possesses a core glycoprotein of Mr approximately 400-500 KD. By use of immunofluorescence light microscopy and immunogold electron microscopy, the PG recognized by this Mab was shown to be deposited in the extracellular matrix of monkey arterial smooth muscle cell cultures in clusters which were not part of other fibrous matrix components and not associated with the cell's plasma membrane. With similar immunolocalization techniques, the CSPG antigen was found enriched in the intima and present in the medial portions of normal blood vessels, as well as in the interstitial matrix of thickened intimal lesions of atherosclerotic vessels. Immunoelectron microscopy revealed that this CSPG was confined principally to the space within the extracellular matrix not occupied by other matrix components, such as collagen and elastic fibers. These results indicate that this particular proteoglycan has a specific but restricted distribution in the extracellular matrix of arterial tissue.  相似文献   

12.
Bone morphogenetic proteins (BMPs) are expressed broadly and regulate a diverse array of developmental events in vivo. Essential to many of these functions is the establishment of activity gradients of BMP, which provide positional information that influences cell fates. Secreted polypeptides, such as Noggin, bind BMPs and inhibit their function by preventing interaction with receptors on the cell surface. These BMP antagonists are assumed to be diffusible and therefore potentially important in the establishment of BMP activity gradients in vivo. Nothing is known, however, about the potential interactions between Noggin and components of the cell surface or extracellular matrix that might limit its diffusion. We have found that Noggin binds strongly to heparin in vitro, and to heparan sulfate proteoglycans on the surface of cultured cells. Noggin is detected only on the surface of cells that express heparan sulfate, can be specifically displaced from cells by heparin, and can be directly cross-linked to a cell surface proteoglycan in culture. Heparan sulfate-bound Noggin remains functional and can bind BMP4 at the plasma membrane. A Noggin mutant with a deletion in a putative heparin binding domain has reduced binding to heparin and does not bind to the cell surface but has preserved BMP binding and antagonist functions. Our results imply that interactions between Noggin and heparan sulfate proteoglycans in vivo regulate diffusion and therefore the formation of gradients of BMP activity.  相似文献   

13.
《The Journal of cell biology》1986,103(6):2683-2696
The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross- linked by antibodies, they initially assimilate into detergent- resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets.  相似文献   

14.
Summary HeLa cells, labeled with Na2 35SO4, release into the culture medium35SO4 bound to plasma membrane vesicles next to35SO4-glycoproteins and free35SO4. Plasma membrane vesicles, experimentally produced by treatment with formaldehyde, contain35SO4 and their surface can be stained with high iron diamine. Scanning of chromatograms of the trypsinate from labeled cells demonstrates radioactivity on the spot of heparan sulfate. It is concluded that HeLa cells synthesize heparan sulfate, which is incorporated at the plasma membrane and released by shedding of small vesicles.Supported by a grant from the Algemene Spaar- en Lijfrentekas Cancer Fund, Brussels, Belgium.  相似文献   

15.
Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.  相似文献   

16.
HeLa cells, labeled with Na235SO4, release into the culture medium 35SO4 bound to plasma membrane vesicles next to 35SO4-glycoproteins and free 35SO4. Plasma membrane vesicles, experimentally produced by treatment with formaldehyde, contain 35SO4 and their surface can be stained with high iron diamine. Scanning of chromatograms of the trypsinate from labeled cells demonstrates radioactivity on the spot of heparan sulfate. It is concluded that HeLa cells synthesize heparan sulfate, which is incorporated at the plasma membrane and released by shedding of small vesicles.  相似文献   

17.
Characterization and metabolism of heparan sulfate glycosaminoglycans and proteoglycans (HSPGs) synthesized by primary cultures of mouse uterine epithelial cells are reported. HSPGs were detected in both the medium and in the cell-associated fraction, whereas glycosaminoglycans containing little or no protein (free glycosaminoglycans) were found primarily in the cell-associated fraction. The cell-associated HSPGs were relatively large (Kav = 0.1 on Superose 12), had a buoyant density in cesium chloride gradients of 1.45-1.55 g/ml, and contained heparan sulfate chains that fell into two size classes, exhibiting Kav values on Superose 12 of 0.2-0.5 and 0.7-0.8, respectively. The free glycosaminoglycan chains displayed a Kav on Superose 12 of 0.6-0.7. The secreted HSPGs were smaller (median Kav on Superose 12 of 0.28) than the cell-associated HSPGs. More than 90% of the cell-associated HSPGs contained hydrophobic portions, as evidenced by their ability to bind to octyl-Sepharose. In contrast, only 10-15% of the secreted HSPGs bound to octyl-Sepharose. HSPGs were detected at both apical and basal cell surfaces/extracellular matrices by indirect immunofluorescence in vitro and in utero and by accessibility to external proteases in vitro. It was estimated that 60-70% of the total cell-associated HSPGs were exposed at the cell surface. The HSPGs released from the cell surface by proteases were slightly smaller than the intact HSPGs and lacked the hydrophobic properties of the latter. These observations suggested that the cell surface HSPGs contain a small, hydrophobic domain that functions in the attachment of HSPGs to cells. The free glycosaminoglycans appeared to be primarily intracellular and were not secreted. The cell-associated HSPGs turned over rapidly (t1/2 = 1.5 h) and appeared to be the precursors to the free glycosaminoglycans. Metabolic turnover of the free glycosaminoglycan pool was a relatively slow process (t1/2 = 10-12 h).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.  相似文献   

19.
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.  相似文献   

20.
The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号