首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of enzyme action in vivo is examined, in the light of established thermodynamic correlates of biological evolution. Adopting a “process” view of matter in the “living state,” the authors focus the analysis on the transition-state theory of reaction rates. Thus, the free-energy change associated with the transition-state barrier is seen as a primary target in the evolution of cellular metabolism. The utility and limitations of reductionistic approaches to enzyme evolution, based on the single enzyme, are explored first. Then, canvassing the wealth of evidence on the role of enzyme organization in vivo, the authors synthesize a “cytosociological” view of enzyme evolution. In this view, a composite (resultant) of individual transition-state barriers is deemed a more appropriate “potential function” for modification in the higher evolution of cell metabolism. The suggested direction of evolutionary changes in this function, dictated by the increasing “socialization” of enzyme action in vivo, stands as a novel postulate. This approach is shown to be completely consonant with current thinking on the thermodynamics of biological evolution, and to provide further insight into the nature of material transformations in the “living state”.  相似文献   

2.
Triosephosphate isomerase (EC 5.3.1.1) has been purified from young and old Tubatrix aceti. The enzyme shows a sharply lower specific activity in homogenates from old nematodes compared to similar preparations from young animals. However, when the enzyme activity of the respective homogenates was adjusted to the same level, equal amounts of antiserum (prepared to pure “young” triosephosphate isomerase) were required to remove the activity. Therefore, the lower specific activity observed in “old” homogenates was due to the presence of less enzyme and not to “altered” enzyme. The same results were obtained by immunotitrations of pure preparations of “young” and “old” enzyme. Moreover, in contrast to results reported for other enzymes, the specific activity of “old” triosephosphate isomerase, during purification, rose to the same value as that of pure “young” enzyme. The evidence indicates that altered triosephosphate isomerase does not exist in old T. aceti. The above results contradict the idea of an “error theory” in which all proteins would develop altered sequences. Pure triosephosphate isomerase (old or young) from T. aceti consists of two subunits, each of molecular weight 26,500. No isozymes could be detected.  相似文献   

3.
A model for the interfacial orientation and the mode of action of lipase is proposed. Lipase is oriented so that its active site is near the oil-water boundary. This orientation is achieved by oil-enzyme bonding at the “hydrophobic head” of the enzyme, a region free of electric charges and relatively resistant to unfolding. The measured KM is a complex constant including the dissociation constant of this oil-enzyme “complex”. The interfacial orientation of lipase is further aided by hydrophilic negative charges on the “back” of the enzyme and by a hydrophilic carbohydrate “tail”.It is suggested that similar hydrophobic heads and hydrophilic tails and asymmetric charge distributions establish the orientation of many enzymes which act at interfaces. Many phospholipases, for instance, appear to be charge-oriented, and the carbohydrate residues of ribonucleases and many other glycoproteins may be hydrophilic tails.Lipase is probably a serine enzyme with a catalytic center similar to that of chymotrypsin, but more hindered, perhaps owing to the presence of a leucine residue, and there is no binding of substrate lipid chains in the “active complex”. The substrate molecule is fixated on the enzyme in a two-dimensional orientation, because its leaving alkoxy group must be received by the serine hydroxyl hydrogen which is directed towards the imidazol ring of the reactive histidine through a hydrogen bond. The high turnover rate of lipolysis, 5 × 105/min, exceptional even for an enzyme, results from the extremely high substrate concentration near the active site, and from an almost complete extrusion of water because of the hydrophobicity of both the active site and the substrate. In addition, both substrate and enzyme, because of their polarity, are already so favorably positioned at the interface that the formation of the “active complex” requires only a proper two-dimensional alignment, perhaps with partial extraction of the substrate molecule from the lipid phase.  相似文献   

4.
The extracellular (1→3)-β-D-glucanase [(1→3)-β-D-glucan glucanohydrolase, E.C. 3.2.1.6] produced by Rhizopus arrhizzus QM 1032 was purified 165-fold by chromatography. The purified enzyme is basic, has a molecular weight of ≈ 10,000, and is unstable in dilute solution but may be stabilized by addition of human serum albumin. The pH-activity profile for the enzyme in the presence of serum albumin shows a peak at about pH 3.5–3.7 and a shoulder at pH 4.5–4.6, whereas in the absence of serum albumin the optimum pH is at pH 4.5–4.6, indicating the presence of two enzymic species, designated “pH 3. 5 activity” and “pH 4.6 activity”. In the presence of albumin the enzyme activity is resistant to inactivation by a wide range of reagents. Ammonium molybdate is, however, a powerful inhibitor of ldpH 3.5 activity” although a much poorer inhibitor of “pH 4.6 activity”. The enzyme activity is stable during heating at pH 3.5 in the presence of human serum albumin. Thus, 94.5 and 88.5 % of “pH 3.5 activity” and “pH 4.6 activity”, respectively, remained after heat treatment for 30 min at 68°. The enzyme is, however, essentially inactive at this temperature, even in the presence of albumin. To account for this finding, a temperature-dependent conformational change is proposed. The enzyme activity is not stable during heating at pH 4.6 in the presence of serum albumin. Km values for action on laminaran are 0.54 mg/ml (pH 3.5) and 0.27 mg/ml (pH 4.6). For lichenan the corresponding values are 3.33 and 2.38 mg/ml. The Vmax for enzyme action on lichenan is 35–40% higher than for action on laminaran at both pH values. Possible relationships between the two forms of the enzyme are briefly considered.  相似文献   

5.
Cholesterol oxidase (EC 1.1.3.6, Brevibacterium sp.), which catalyzes the reaction: cholesterol + O2Δ4-cholestenone + H2O2, has no effect on the cholesterol of intact (human) erythrocytes and of “resealed” ghosts, when it is present only outside these ghosts. The cholesterol of “leaky” ghosts, of “resealed” ghosts with enzyme trapped within, and of “inside-out” vesicles, was completely oxidized. This pattern indicates that the inner (cytoplasmic) membrane surface must be exposed to the enzyme for the reaction to occur, and that outer surface cholesterol only becomes reactive after the membrane has been degraded by the oxidation of inner surface cholesterol. The enzymatic oxidations followed monotonic first-order kinetics, and hence gave no evidence to support the two states of cholesterol in the membrane that had been postulated earlier from studies on the plasma lipoprotein extraction of cholesterol from the membrane.  相似文献   

6.
A quantum theoretic approach to the problem of specific biological interactions at the molecular level, is presented. The concept of a “measuring system” in analogy with the enzyme macromolecule is used. The main hypothesis is that in the course of an enzymic reaction, the enzyme will specify the eigenvalues of the observables associated with the substrate, on some particular quantum states. Then, any “perturbation” induced in the substrate, will also be specified by the enzyme. In this context, the enzymic substrate is “perturbed” by an electromagnetic field and the physical transition S → S1 thus induced is “measured” in the E(S) + S1 enzyme reaction, as compared with the control E(S) + S reaction. The effect on the enzyme reaction is manifested by an enhancement of the reaction rate appearing periodically at well defined substrate irradiation times. The minimum substrate irradiation time inducing the first effect, termed tm and the fixed time period that always appears to delimit two successive rate effects, termed the τ-parameter, are enzyme dependent. The same idea was used to devise an experimental model for the study of some more general interactions, within cellular systems. The growth of auxotrophic micro-organisms in minimal media supplemented with irradiated growth factors was followed. The pattern of growth stimulations obtained with this model, displays a similarity with the periodic enhancements of enzymic rates, obtained with irradiated substrates. This new type of evidence may suggest a characteristic of biological specificity, previously unrecognized.  相似文献   

7.
Germinating pea (Pisum sativum L.) seeds of two dwarf cultivars, “Progress No. 9” and “Green Arrow”, and two tall cultivars, “Alaska” and “Alderman”, were treated with low temperature (3–5°C) for 14 days and then transferred to normal growing conditions (19–21°C for 16 h/14.5–16.5°C for 8 h) for an additional 10 days. Biosynthesis of [14C]ent-kaurene from [14C]2-mevalonic acid (2-MVA) was assayed in cell-free enzyme extracts prepared from shoot tips 10 days after cold treatment and was compared with activity in enzyme extracts prepared from noncold-treated, 10-day-old control plants. Shoot lengths of cold-treated plants were measured throughout a 35-day period and compared with shoot lengths of plants grown without cold treatment for 25–35 days. Low temperature induced a five-to 10-fold enhancement ofent-kaurene, hence potentially gibberellin (GA), biosynthesis in seedlings of the two dwarf cultivars but not in the tall cultivars. However, the lack of an increase in growth rate in the cold-treated dwarfs indicated that endogenous GA biosynthesis remained blocked at some point beyondent-kaurene in the biosynthetic pathway. Since the late-flowering “Alderman” cultivar did not exhibit enhanced biosynthesis ofent-kaurene, it appears that if vernalization in late-flowering cultivars of peas is correlated with enhanced GA biosynthesis, it is not the early part of the biosynthetic pathway which is affected.  相似文献   

8.
Several types of conditions allow the disconnection of homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase. A model that includes a concerted gross conformational change corresponding to the homotropic cooperative interactions between the catalytic sites and local “site by site” effects promoted by the effectors accounts for this disconnection as well as for the other known properties of the enzyme. However, the substrate concentration influences the extent of stimulation and feedback inhibition of the catalytic activity by the effectors. This result is explained by assuming that these effectors promote a “primary effect”, which is exerted locally “site by site”, and a “secondary effect”, which is mediated by the substrate. As predicted by the model, relaxed (R) forms of the enzyme show only the primary effect. In addition 2-ThioU-aspartate transcarbamylase, a modified form of the enzyme in which the homotropic cooperative interactions between the catalytic sites are selectively abolished, shows the same heterogeneity in CTP binding sites as normal aspartate transcarbamylase.  相似文献   

9.
The in vitro synthesis of chalcones has been demonstrated using a special biphasic enzyme assay. The highly viscous lower phase in this assay stems from a tapetum fraction of anthers of Tulipa cv. “Apeldoorn” which has been used an enzyme source. The upper phase of this system consists of a reaction mixture of the normal “flavanone synthase” assay. It is suggested that chalcone synthesis occurs at the boundary layer between the two phases. To prevent spontaneous as well as enzymatic cyclization of the chalcones formed (phloroglucinyl type), the pH of the upper phase must not be allowed to exceed pH 4.0. Under these pH conditions, chalcone formation by a reverse reaction of chalcone-flavanone isomerase can be excluded. The measured substrate specificity of the “chalcone synthase” corresponds to the conditions of chalcone formation in the natural system. Using p-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA, respectively, as substrates, the enzyme system forms the correspondingly substituted chalcones which are also accumulated in the loculus of tulip anthers. It is suggested that this chalcone synthase is identical to the previously described “flavanone synthase”. The results can be further explained as follows. (i) Not flavanones, but rather chalcones are the first C15 intermediates of flavonoid biosynthesis in tulip anthers. (ii) In this Tulipa system, the substitution pattern of three different hydroxycinnamic acids can be transferred unchanged into the flavonoid C15 stage. (iii) The role of chalcone-flavanone isomerase is to cyclize chalcones to flavanones on the direct biosynthetic pathway to the further accumulated flavonol glycosides. (iv) The sensitivity of the reaction with regard to chalcone production points to the localization of chalcone synthase in a most unstable and, up to now, unknown tapetal compartment. Since purification of the enzyme results in exclusive production of flavanones, it is suggested that certain “chalcone stabilizing factors” must occur in the natural system. (v) The phenomenon of chalcone accumulation in tulip anthers, however, must be caused by a complex system, distinguished by cooperation of certain biochemical and physiological conditions, and, finally, by special compartmentation of the enzymes which are responsible for the biosynthesis of flavonoids.  相似文献   

10.
《Process Biochemistry》2014,49(5):830-839
A set of recommendations to maintain high activity of immobilized enzymes is developed based on direct observation via AFM. This helps to close knowledge gaps that often lead to poor performance of nanobiocatalysts for chemical synthesis. Molecule-level height and volume distribution analyses from high-resolution AFM images were applied to Candida antarctica Lipase B (CALB), subtilisin Carlsberg, and the Lipase from Thermomyces lanuginosus (TLL) deposited on model silica surfaces. Ensembles of flexible or “soft” enzymes appear separated when interactions with the surface are considerable at low surface coverage but form highly entangled structures of increased conformational stability at high surface coverage. By contrast, ensembles of rigid or “hard” enzymes appear to maintain stable aggregates even under strong interaction with the surface. The more rigid the enzyme the higher its tendency to remain in a densely packed state that is able to withstand surface-induced conformational transitions detrimental to catalysis. Weakening of surface-protein interactions for “soft” enzymes will prevent single-molecule immobilization, which reduces catalytic competency through structural changes. Multi-layer coverage in enzyme immobilization should generally be avoided due to mass transfer limitations.  相似文献   

11.
“Aggregate” enzyme, chromatin and DNA preparations were isolated from livers of rats treated with the carcinogen, methylazoxymethanol (MAM) acetate. DNA template activity for RNA synthesis in vitro was unimpaired while the template activity of chromatin was slightly reduced. There was a marked inhibition of UTP incorporation into RNA, however, when the “aggregate” enzyme preparation was the source of both template and RNA polymerase. Circular dichroism analysis of the “aggregate” enzyme preparation indicated a change in conformation of the protein component. The results suggest that MAM acetate interacts with nuclear proteins and produces conformational changes which result in a decreased RNA synthesis.  相似文献   

12.
An α-glucosidase active at acid pH and presumably lysosomal in origin has been purified from human liver removed at autopsy. The enzyme has both α-1,4-glucosidase and α-1,6-glucosidase activities. The Km of maltose for the enzyme is 8.9 mm at the optimal pH of 4.0. The Km of glycogen at the optimal pH of 4.5 is 2.5% (9.62 mm outerchain end groups). Isomaltose has a Km of 33 mm when α-1,6-glucosidase activity is tested at pH 4.2. The enzyme exists in several active charge isomer forms which have pI values between 4.4 and 4.7. These forms do not differ in their specific activities. Electrophoresis in polyacrylamide gels under denaturing conditions indicates that the protein is composed of two subunits whose approximate molecular weights are 88,000 and 76,000. An estimated molecular weight of 110,000 was obtained by nondenaturing polyacrylamide gel electrophoresis. When the protein was chromatographed on Bio-Gel P-200 it was separated into two partially resolved active peaks which did not differ in their charge isomer constitution or in subunit molecular weights. One peak gave a strongly positive reaction for carbohydrate by the periodic acid-Schiff method and the other did not. Both had the same specific activity. The enzyme was antigenic in rabbits, and the antibodies so obtained could totally inhibit the hydrolytic action of the enzyme on glycogen but were markedly less effective in inhibiting activity toward isomaltose and especially toward maltose. Using these antibodies it was found that liver and skeletal muscle samples from patients with the “infantile” form or with the “adult” form of Type II glycogen storage disease, all of whom lack the lysosomal α-glucosidase, do not have altered, enzymatically inactive proteins which are immunologically cross-reactive with antibodies for the α-glucosidase of normal human liver.  相似文献   

13.
《Process Biochemistry》2004,39(7):805-813
A new “parametric” classification of the types of single-substrate enzymic reactions is proposed that includes 15 different types: seven inhibited, seven activated and one initial (uninhibited, i=0 and nonactivated, a=0). The new classification takes into account both the “parametricity” of these reactions and the mechanisms of their action. It unites all the types in an original symmetric system which vividly demonstrates the interconnection between separate (strictly definite) types of inhibited and activated enzymic reactions. The proposed classification permits the revision and some corrections to traditional “competitive” terminology as well as the application of these ideas and mathematical approaches pertinent to the calculation of reactions of enzyme inhibition for data analysis of enzyme activation.  相似文献   

14.
《Plant Science Letters》1978,11(3-4):293-303
From excised fenugreek (Trigonella foenum graecum L) cotyledons Triton X-100-treated ribosomal pellets were prepared. Two different cyclizing ribonuclease activities could be obtained by resuspending the pellet in the homogenizing buffer and subsequently in the buffer fortified with 0.5 M KCl: the first — “soluble” — ribonuclease showed a preference for poly(U) and poly(A) > poly(C) and tRNA; the second — “ribosomal” — ribonuclease showed a preference for poly(U) and poly(C) ⪢ poly(C) and tRNA. The digestion of dinucleoside monophosphates showed a different pattern; for the ‘soluble” enzyme GpA, ApA ⪢ UpA > CpA, and for the “ribosomal” enzyme UpA ⪢ ApA, GpA > CpA.With the “soluble” ribonuclease the digestion of poly(U) was inhibited by poly(A) in approximately molar proportion whereas the “ribosomal” ribonuclease was specifically inhibited at approx 0.1 of the poly(U) concentration: this inhibition was also observed with poly(C) as substrate. The digestion of poly(C) was also inhibited by purine-nucleosides but not by pyrimidine nucleosides. 7-methylguanosine was more inhibitory than guanosine and especially several cytokinin ribosides were more inhibitory than adenosine.The main features of the above “ribosomal” ribonuclease were observed in comparable washes prepared from ribosomal pellets of soybean (Glycine Max (L) Merr.) cotyledons.  相似文献   

15.
Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe the first crystal structure of mitochondrial aminoacyl-tRNA synthetase (aaRS) complexed with tRNA at a resolution of 3.0 Å. Unlike bacterial PheRSs, the hmPheRS recognizes C74, the G1–C72 base pair, and the “discriminator” base A73, proposed to contribute to tRNAPhe identity in the yeast mitochondrial enzyme. An interaction of the tRNA acceptor stem with the signature motif 2 residues of hmPheRS is of critical importance for the stabilization of the CCA-extended conformation and its correct placement in the synthetic site of the enzyme. The crystal structure of hmPheRS–tRNAPhe provides direct evidence that the formation of the complex with tRNA requires a significant rearrangement of the anticodon-binding domain from the “closed” to the productive “open” state. Global repositioning of the domain is tRNA modulated and governed by long-range electrostatic interactions.  相似文献   

16.
17.
A new technique, the quantitative determination of total enzyme concentrations by specific immunoprecipitation with purified, radioiodinated antibodies, was used to investigate the presence and possible roles of inactive enzyme in the regulation of chalcone synthase. Dark-grown cell suspension cultures from parsley (Petroselinum hortense) contained neither catalytically active nor detectable amounts of immunoprecipitable chalcone synthase. Irradiation induced large increases and subsequent decreases of both. Significant differences in the peak positions and in the half-lives of active and total chalcone synthase indicated that induced cells contained inactive as well as active enzyme forms. The presence of inactive enzyme could be explained by two different modes of regulation, (i) simultaneous de novo synthesis of active and inactive enzyme (“Simultaneous Model”), or (ii) de novo synthesis of active enzyme only, with sequential steps of inactivation and degradation (“Sequential Model”). Both models were compatible with experimental results, as analyzed mathematically by investigating the relations between curves for rate of enzyme synthesis, enzyme activity, total enzyme, and half-lives of active and total enzyme. However, the “Simultaneous Model” postulated that de novo synthesis of inactive enzyme represented always the vast majority of total enzyme synthesis, while the Sequential Model integrated inactive enzyme with facility in a sequence of irreversible inactivation and degradation of active enzyme. Experiments with repeated induction indicated that cells containing large amounts of inactive enzyme increased enzyme activity by de novo synthesis rather than by activation of preexisting inactive enzyme.  相似文献   

18.
Urea, guanidine hydrochloride, and neutral salts both activate and denature pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) from rabbit liver. Activation occurs at lower concentrations (e.g. 2-2.5 m for urea) of these compounds and is rapid and reversible. Greater structural changes leading to inactivation occur slowly under “activating conditions” but rapidly at higher concentrations of urea. Both reversibly and irreversibly inactivated species are formed. Activation by urea does not involve either dissociation of the enzyme to subunits or aggregation to multimers, and there is little disruption of protein secondary structure. The V and Km for substrates, Ki for product, and the rate of release of product from the enzyme are increased by urea, and substrate inhibition is decreased; urea has little effect on the reactivity of reduced enzyme with oxygen. Both flavin and tryptophanyl fluorescence increase in the presence of urea; at lower concentrations of urea (≤2 m), there is a rapid increase followed by slower, sigmoidal increases. The polarization of flavin fluorescence of the oxidase is increased upon the addition of 2 m urea, which corresponds to the initial enhancement of protein and flavin fluorescence intensities, and then decreases. The near-ultraviolet-visible absorption spectra of native enzyme and that treated with 2 m urea are only slightly different; however, a considerable change at the flavin-binding site is reflected by the circular dichroism spectra. Hence, it appears that urea yields a rapidly formed, “activated” species of the oxidase that is changed primarily at the active site in a manner that allows increased dissociation of substrate and product.  相似文献   

19.
The effect of aging and CDP-choline treatment (20 mg kg−1 body weight i.p. for 28 days) on the maximal rates (Vmax) of representative mitochondrial enzyme activities related to Krebs’ cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate–oxaloacetate- and glutamate–pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic “light” and “heavy” mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months.During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli.Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18 months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic “light” mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism.  相似文献   

20.
In studies on the mechanism of the inhibitory effect of 2,3-diphosphoglycerate on glycolysis in human erythrocytes, the following results were obtained:1) Glucose consumption and lactate production are reduced by 70 and 40% relative to normal erythrocytes in red blood cells containing five times the normal amount of 2,3,-P2-glycerate (“high-diphosphoglycerate” cells) at an extracellular pH of 7.4. The marked dependency of glycolysis on the extracellular pH observed in normal erythrocytes is almost completely lost in the “high-diphosphoglycerate” cells.2) About 50% of the inhibition of glycolysis in “high-diphosphoglycerate” cells can be accounted for by the 2,3-P2-glycerate-induced decrease of the red-cell pH. This fall of the red-cell pH which occurs as a consequence of the Donnan effect of the non-penetrating 2,3-P2-glycerate anion leads to a reduction of the glycolytic rate due to the properties of the enzyme phosphofructokinvse.3) The remaining part of the inhibitory effect must be attributed to an inhibition by 2,3-P2-glycerate of glycolytic enzymes. From measurements of glycolytic rates and of the concentrations of glycolytic intermediates in the absence and presence of methylene blue it is concluded that the hexokinase reaction is inhibited by an elevation of 2,3-P2-glycerate concentration. A marked increase of 3-P-glycerate concentration in “high-diphosphoglycerate” cells suggests that also the enzyme pyruvate kinase is inhibited by 2,3-P2-glycerate.4) The dependencies of net-change of 2,3-P2-glycerate concentration on the red-cell pH are identical in normal and “high-diphosphoglycerate” cells indicating that the balance between formation and decomposition of 2,3-P2-glycerate is the same in erythrocytes with normal and very high concentrations 2,3-P2-glycerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号