首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Carotenoids are used in wide-ranging food applications, but they are susceptible to degradation by many factors including light. We examined the photodegradation of five kinds of carotenoids and three kinds of anthocyanins to clarify which structures of pigments were favorable to accelerated degradation by sulfides under UVA irradiation. Under UVA irradiation, crocetin and crocin were decomposed more rapidly in the presence of dimethyl tetrasulfide than in the absence of the sulfide, but not as rapidly as β-carotene, zeaxanthin and β-cryptoxanthin were. However, cyanidin was decomposed more slowly in the presence of sulfide than in the absence of sulfide. Moreover, the photodegradation of kuromanin and keracyanin was not affected by the addition of a sulfide. We also examined the mechanism for this accelerated degradation. Normal hexane was more favorable to the photodegradation of β-carotene than methanol and ethanol. The accelerated degradation was inhibited by free radical scavengers, but enhanced by the addition of deuterium oxide. These results suggest that conjugated double bonds were favorable to the accelerated photodegradation by sulfide and that this reaction was mediated by free radicals.  相似文献   

3.
A variety of carotenoids have been incorporated in vivo intoa carotenoid mutant of the unicellular alga, Chlamydomonas reinhardtii.The mutant can synthesize retinal from exogenous carotenoids.In this way the first step in biosynthesis of retinoids, namelyhow ß-carotene is converted into retinal, has beenstudied. Since retinal forms with opsin the photoreceptor forphototaxis in Chlamydomonas, the action-spectral peaks of thephototaxis restored by carotenoid incorporation were used topredict the products formed by the enzyme that cleaves thesecarotenoids. The data suggest that the physiologically relevantcleavage of ß-carotene into retinal is central ratherthan excentric. When apocarotenoids are substrates, the enzymetargets the double bond located a constant distance away fromthe carbonyl group on the acyclic end and, consequently, retinalis not produced. Interestingly, dehydro-analogues containinga triple bond are preferentially cleaved and oxidized at thetriple bond relative to the corresponding analogue with onlydouble bonds. Key words: Chlamydomonas reinhardtii, Chlorophyceae, retinoid biosynthesis, carotenoid cleavage, action spectrum  相似文献   

4.
Carotenoid composition in leaves of normal, lycopenic and ζ-carotenic mutants of Zea mays were investigated. In lycopenic leaves, in addition to lycopene, phytoene, phytofluene, δ- and γ-carotene, trace amounts of α- and β-carotene and antheraxanthin were identified. Low light promoted accumulation of α- and β-carotene; high light brought about an increase in antheraxanthin content. In the leaves of the ζ-carotenic mutant, phytoene, phytofluene and ζ-carotene were synthesized. Illumination of low intensity stimulated carotenoid synthesis to a slight extent. Relative amounts of carotenoid components were essentially the same as in etiolated material, except for a small increase in cis-ζ-carotene. Under high intensity illumination, carotenoids were rapidly destroyed.  相似文献   

5.
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15′-β-carotene oxygenase (BCO1), 9′,10′-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.  相似文献   

6.
Relatively large amounts of the polycis compounds, pro-γ-carotene and prolycopene were administered to chicks or hens. About four-fifths of the pigment was destroyed, and the rest occurred mainly in the feces. Far-reaching bio-stereoisomerization took place that yielded all-trans and some neo-forms of the compound administered, besides polycis isomers, in part possessing more cis double bonds than the starting material. Some observations on the behavior of all-trans-lycopene in chicks are reported.  相似文献   

7.
Deinococcus radiodurans strain R1 synthesizes a unique ketocarotenoid product named deinoxanthin. The detailed steps involved in the biosynthesis of deinoxanthin remain unresolved. A carotene ketolase homologue encoded by dr0093 was inactivated by gene mutation to verify its function in the native host D. radiodurans . Analysis of the carotenoids in the resultant mutant R1ΔcrtO demonstrated that dr0093 encodes γ-carotene ketolase (CrtO) catalysing the introduction of one keto group into the C-4 position of γ-carotene derivatives to form ketolated carotenoids. The mutant R1ΔcrtO became more sensitive to H2O2 treatment than the wild-type strain R1, indicating that the C-4 keto group is important for the antioxidant activity of carotenoids in D. radiodurans . Carotenoid extracts from mutant R1ΔcrtO exhibited lower 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the wild-type strain R1. The enhanced antioxidant ability of ketocarotenoids in D. radiodurans might be attributed to its extended conjugated double bonds and relative stability by the C-4 keto group substitution.  相似文献   

8.
During transfers of the UV-induced mutant of the non-acid-fast strain ofMycobacterium phlei (PN3), its somewhat differently orange-red coloured modification was found. The analysis of the cell pigment showed that unlike the PN3 mutant which synthesizes the whole range of carotenes and xanthins, in the modification approximately half of the total amount of carotenoids is represented by chromatographically heterogeneous lycopene, the second half by γ-carotene. The further study of the lycopene fractions led to the conclusion that their difference is caused by the geometrical isomerism of the double bonds. The origin of the describedcis-trans-isomers of lycopene is discussed.  相似文献   

9.
In the double helix formed by the semiprotonated polycytidylic acid (poly C), both strands are linked via NH+...N hydrogen bonds. It is a known fact that such symmetrical hydrogen bonds with a double minimum potential well are extremely polarizable. This polarizability causes interaction effects, in particular the proton dispersion forces between such hydrogen bonds. These forces result in a shift of the energy levels and a continuum is observed in the infrared (IR) spectra of solutions in which such hydrogen bonds are present. The continuum occurs in the IR spectrum of the semiprotonated poly C, when the former is present in coiled state. If the double helix forms, an extremely broad band of the NH stretching vibration is observed instead of the continuum, since in the double helix all hydrogen bonds are oriented equally to one another and polarize each other mutually to a strong degree. The proton dispersion forces between the hydrogen bonds balance a considerable part of the electrostatic repulsion of the protons and hence enable the double helix to form. It is conceivable that an unsymmetrical double minimum potential well is present in the NH...N bonds in the DNA and RNA. Such bonds may likewise be considerably more polarizable than electron systems and thus, in this case too, proton dispersion forces would contribute to helix stabilization.  相似文献   

10.
The carbon magnetic resonance spectra of many fatty acid methyl esters with cis and trans double bonds and triple bonds at various positions and in many different combinations have been investigated.The influence of the ester group on double and triple bonds in the fatty acid chain depends strongly on the positions of these bonds. For a given position the influence is constant, even if one or more other double or triple bonds are present.Together with the evaluated chemical shift parameters for the effects of double and triple bonds on each other, complete assignments are possible and spectra of various types of unsaturated esters can be predicted with high accuracy (±0.1 ppm).  相似文献   

11.
The desaturation reactions of C30 carotenoids from diapophytoene to diaponeurosporene was investigated in vitro and by complementation in Escherichia coli. The expressed diapophytoene desaturase from Staphylococcus aureus inserts three double bonds in an FAD-dependent reaction. The enzyme is inhibited by diphenylamine. In the complementation experiment diapophytoene desaturase was able to convert C40 phytoene to some extend but exhibited a high affinity to ζ-carotene. Comparison to the reaction of a phytoene desaturase from Rhodobacter capsulatus catalyzing a parallel three-step desaturation sequence with the corresponding C40 carotenes revealed that this desaturase can also convert C30 diapophytoene. Other homologous bacterial C40 carotene desaturases could also utilize C30 substrates, including one type of ζ-carotene desaturase which converted diaponeurosporene to diapolycopene. Further complementation experiments including the diapophytoene synthase gene from S. aureus revealed that the C30 carotenogenic pathway is determined by this initial enzyme which is highly homologous to C40 phytoene synthases.  相似文献   

12.
Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment–protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, β-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing π-chain length. However, zeaxanthin and β-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of β-carotene, despite all of these molecules having 11 conjugated carbon–carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment–protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.  相似文献   

13.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors for reductase chains of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the δ-proteobacterium Geobacter sulfurreducens AM-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydrogenation of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens AM-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed.  相似文献   

14.
We investigated the effects of acute exhaustive exercise and β-carotene supplementation on urinary 8-hydroxy-deoxyguanosine (8-OHdG) excretion in healthy nonsmoking men. Fourteen untrained male (19-22 years old) volunteers participated in a double blind design. The subjects were randomly assigned to either the β-carotene or placebo supplement group. Eight subjects were given 30 mg of β-carotene per day for 1 month, while six subjects were given a placebo for the same period. All subjects performed incremental exercise to exhaustion on a bicycle ergometer both before and after the 1-month β-carotene supplementation period. The blood lactate and pyruvate concentrations significantly increased immediately after exercise in both groups. The baseline plasma p-carotene concentration was significantly 17-fold higher after β-carotene supplementation. The plasma β-carotene decreased immediately after both trials of exercise, suggesting that β-carotene may contribute to the protection of the increasing oxidative stress during exercise. Both plasma hypoxanthine and xanthine increased immediately after exercise before and after supplementation. This thus suggests that both trials of exercise might enhance the oxidative stress. The 24-h urinary excretion of 8-OHdG was unchanged for 3 days after exercise before and after supplementation in both groups. However, the baseline urinary excretion of 8-OHdG before exercise tended to be lower after β-carotene supplementation. These results thus suggest that a single bout of incremental exercise does not induce the oxidative DNA damage, while β-carotene supplementation may attenuate it.  相似文献   

15.
16.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

17.
Lutein, as a carotenoid with strong antioxidant capacity and an important component of macular pigment in the retina, has wide applications in pharmaceutical, food, feed, and cosmetics industries. Besides extraction from plant and algae, microbial fermentation using engineered cell factories to produce lutein has emerged as a promising route. However, intra-pathway competition between the lycopene cyclases and the conflict between cell growth and production are two major challenges. In our previous study, de novo synthesis of lutein had been achieved in Saccharomyces cerevisiae by dividing the pathway into two stages (δ-carotene formation and conversion) using temperature as the input signal to realize sequential cyclation of lycopene. However, lutein production was limited to microgram level, which is still too low to meet industrial demand. In this study, a dual-signal hierarchical dynamic regulation system was developed and applied to divide lutein biosynthesis into three stages in response to glucose concentration and culture temperature. By placing the genes involved in δ-carotene formation under the glucose-responsive ADH2 promoter and genes involved in the conversion of δ-carotene to lutein under temperature-responsive GAL promoters, the growth-production conflict and intra-pathway competition were simultaneously resolved. Meanwhile, the rate-limiting lycopene ε-cyclation and carotene hydroxylation reactions were improved by screening for lycopene ε-cyclase with higher activity and fine tuning of the P450 enzymes and their redox partners. Finally, a lutein titer of 19.92 mg/L (4.53 mg/g DCW) was obtained in shake-flask cultures using the engineered yeast strain YLutein-3S-6, which is the highest lutein titer ever reported in heterologous production systems.  相似文献   

18.
An improved isocratic and rapid HPLC method was developed for the measurement of carotenoids, retinol and tocopherols in human serum. Vitamins were extracted with hexane. Mobile phase consisted of a mixture acetonitrile:methylene chloride:methanol with 20 mM ammonium acetate. This method used a small bead size (3 μm) Spherisorb ODS2 column with titane frits. Diode array and fluorescence detectors were used respectively for the detection of carotenoids and retinol/tocopherols. Chromatographic separation was complete in 13 min for β-cryptoxanthin, cis–trans-lycopene, α-carotene, β-carotene, cis-β-carotene, retinol, δ-tocopherol, γ-tocopherol and α-tocopherol. Echinenone and tocol were employed as internal standards for diode array and fluorescence detection. Accuracy was validated using standard reference material (SRM) 968C. Intra-assay and inter-assay precision were respectively 0.2–7.3% and 3.6–12.6%. Sensitivity was verified using the ICH recommendations and the limit of detection (LOD) obtained was sufficient for routine clinical application.  相似文献   

19.
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin.  相似文献   

20.
Ustilago maydis, the causative agent of corn smut disease, contains two genes encoding members of the carotenoid cleavage oxygenase family, a group of enzymes that cleave double bonds in different substrates. One of them, Cco1, was formerly identified as a β-carotene cleaving enzyme. Here we elucidate the function of the protein encoded by the second gene, termed here as Ustilago maydis Resveratrol cleavage oxygenase 1 (Um Rco1). In vitro incubations of heterologously expressed and purified UM Rco1 with different carotenoid and stilbene substrates demonstrate that it cleaves the interphenyl Cα-Cβ double bond of the phytoalexin resveratrol and its derivative piceatannol. Um Rco1 exhibits a high degree of substrate specificity, as suggested by the lack of activity on carotenoids and the other resveratrol-related compounds tested. The activity of Um Rco1 was confirmed by incubation of U. maydis rco1 deletion and over-expression strains with resveratrol. Furthermore, treatment with resveratrol resulted in striking alterations of cell morphology. However, pathogenicity assays indicated that Um rco1 is largely dispensable for biotrophic development. Our work reveals Um Rco1 as the first eukaryotic resveratrol cleavage enzyme identified so far. Moreover, Um Rco1 represents a subfamily of fungal enzymes likely involved in the degradation of stilbene compounds, as suggested by the cleavage of resveratrol by homologs from Aspergillus fumigatus, Chaetomium globosum and Botryotinia fuckeliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号