首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development period, survival rate, longevity and fecundity of two whiteflies, Bemisia tabaci B‐biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) were compared under different temperature laboratory conditions (15°C, 18°C, 21°C and 24°C). Egg development of B. tabaci B‐biotype was significantly longer compared with that of T. vaporariorum at 15°C, 18°C and 24°C. Significantly longer pseudo‐pupae development and lower survival rate were found in B. tabaci B‐biotype at 15°C compared with those at 18°C, 21°C and 24°C. Significantly higher fecundity was found in B. tabaci B‐biotype at 24°C compared with that at 15°C, 18°C and 21°C. However, the fecundity of T. vaporariorum was significantly lower at 24°C relative to that at 15°C, 18°C and 21°C. Significantly shorter 1st instar larval development was found in T. vaporariorum compared with that of B. tabaci at 15°C and 18°C. Significantly longer 2nd instar larval development was found in B. tabaci and T. vaporariorum at 15°C compared with that at 18°C, 21°C and 24°C. However, significantly shorter 3rd instar larval development was found in T. vaporariorum compared with that of B. tabaci at 15°C, 18°C and 24°C. The adaptive divergence of tolerance to relatively low temperature may be an important factor that results in the interspecific differentiation between the seasonal dynamics of these two whiteflies in China.  相似文献   

2.
The minimum and maximum temperatures for germination of uredospores of Puccinia striiformis, P. recondite, P. coronata and P.gramnis isolates from south-central Chile were 0°C and 26°C, 0°C and 32°C, 8°C and 30°C, and 4°C and 34°C, respectively, whereas the shortest latent period was 8.5 days for P. struformis at 20°C, 5 days for P. recondite at 26°C, 5.5 days for P. coronata at temperatures, reaching the minimum and maximum threshold temperatures at 0.006°C and 23°C for P. strüformis, 0.31°C for P. recondita, 2.87°C and 30°C for P. coronata, and 1.72°C and 32°C for P. graminis. rspectively. The cardinal temperatures give no explanation as to the observed sequential appearance of these rusts during the growing season. Other phenomena like the systemic mycelial growth of P.striiformis might be involved here. At temperatures between 19°C and 22°C, the average daily increase of the area of sporulation of P.striiformis in wheat leaves varied between 9.05 and 22.48 mm2/infection site. This variation was due to substrate (plant) history and environmental factors.  相似文献   

3.
Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae) is an indigenous parasitoid of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) from southern China; the effects of constant temperatures on the life history of E. sp. nr. furuhashii were examined in the laboratory. The developmental period ranged from 39.2 days at 20°C to 12.40 days at 32°C. A total of 263.4 degree-days were required to complete development with a lower developmental threshold temperature of 11.1°C. Of the eggs produced, 59.3% completed development at 20°C with completion increasing to 71.5% at 26°C. Adult female longevity was 10.8 days at 20°C and 5.2 days at 32°C while the mean daily offspring reproduced per female was highest at 29°C with 5.9 offspring. Adult oviposition peaked three days after emergence at 26, 29 and 32°C, and four days post-emergence at 20°C and 23°C. The total numbers of offspring produced per female ranged from 25.7 individuals at 32°C to 41.1 individuals at 20°C. The sex ratio had a female bias and ranged from 0.72 at 17°C to 0.51 at 35°C. The intrinsic rate of increase was 0.1727 at 29°C followed with 0.1606 at 32°C. Results indicated that E. sp. nr. furuhashii reaches its maximum biological potential at temperatures ranging from 26°C to 32°C.  相似文献   

4.
Peristenus spretus Chen et van Achterberg (Hymenoptera: Braconidae), a parasitoid of the plant bug Apolygus lucorum (Hemiptera: Miridae), has been studied for use in augmentative biological control in China. Under laboratory conditions, we explored the development, survival, age-specific and potential lifetime fecundity, oviposition period and progeny sex ratio of P. spretus reared at six constant temperatures (15°C, 19°C, 23°C, 27°C, 31°C, 35°C) on the second instar nymphs of A. lucorum. At 15°C, male and female P. spretus took 48.7 ± 0.3 and 52.5 ± 0.3 days to complete their immature development, while developmental time was reduced by more than half at 23°C and 27°C. The parasitoid can only develop to the larval stage at 31°C and neither larva nor pupa survived at 35°C. The estimated lower developmental threshold of the immature stage was 7.3°C. When parasitoid adults were exposed at 15°C, females laid 90% of their eggs at first 19 days of oviposition and had an extended reproductive life. In contrast, females held at 27°C laid most of their eggs (90%) in their first of 10 days of oviposition and had shorter longevity. The highest potential lifetime fecundity of P. spretus was 671.2 ± 34.7 SE eggs produced over 23.4 ± 1.4 SE days at 23°C. At 15°C, 19°C and 23°C, sex ratios of reared parasitoids were male-biased, but at 27°C there was no male bias.  相似文献   

5.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

6.
C. S-J. Cheah 《BioControl》1987,32(4):357-365
The development rate from egg to adult for ♂ and ♀Chromatomyia (Phytomyza) syngenesiae andDiglyphus isaea increased linearly between 19 and 25°C.D. isaea had a faster developmental rate thanC. syngenesiae between 19 and 25°C but therer was no difference at 16°C. FemaleD. isaea required 154.6 D° above the theoretical threshold of 12.80°C and maleD. isaea 152.4 D° above 12.9°C for total development from egg to adult emergence. FemaleC. syngenesiae needed 207.0 D° above 12°C and ♂ and 211.0 D° above 11.6°C for total development.   相似文献   

7.
8.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

9.
The effect of temperature on the life table of Acyrthosiphon pisum reared on Pisum sativum was evaluated under laboratory conditions using temperatures of 10, 15, 20, 25, 30, and 35°C. The development time of juvenile A. pisum decreased with increasing temperature (from 21.3 days at 10°C to 4.7 days at 35°C). Adult longevity also decreased with increasing temperature (from 53.2 days at 10°C to 2.3 days at 35°C). Interestingly, 70% and 25% of A. pisum nymphs reared at 30°C and 35°C, respectively, successfully developed into adults. These temperatures have previously been considered unsuitable for A. pisum development. However, adult aphids reared at 30°C and 35°C failed to reproduce. Linear regression analysis revealed that the lower development threshold of A. pisum was 153.1 degree‐days above 1.9°C. Maximal average reproductive capability was observed at 10°C for A. pisum adults, with each adult producing more than 120 nymphs. The intrinsic rate of increase (rm) of A. pisum increased from 0.124/day at 10°C to 0.337/day at 25°C, whereas opposite trends were observed for the net reproductive rate (R0) and the mean generation time (GT). At 20°C and 25°C, the intrinsic rate of increase of A. pisum was significantly higher than at 10°C and 15°C (P < 0.0001), indicating that 20°C and 25°C are within the optimal range for the growth of A. pisum, and that 30°C is beyond the upper threshold limit for reproduction, which involves a temperature range that is narrower than that of the survival range (upper limit is unknown, but above 35°C).  相似文献   

10.
Abstract. The thermal preferences of Alaskozetes antarcticus (Acari, Cryptostigmata) and Cryptopygus antarcticus (Collembola, Isotomidae) were investigated over 6 h within a temperature gradient (?3 to +13 °C), under 100% relative humidity (RH) conditions. After 10 days of acclimation at ?2 or +11 °C, individual supercooling points (SCP) and thermopreferences were assessed, and compared with animals maintained for 10 days under fluctuating field conditions (?6 to +7 °C). Acclimation at ?2 °C lowered the mean SCP of both A. antarcticus (?24.2 ± 9.1) and C. antarcticus (?14.7 ± 7.7) compared to field samples (?19.0 ± 9.0 and ?10.7 ± 5.2, respectively). Acclimation at +11 °C increased A. antarcticus mean SCP values (?13.0 ± 8.5) relative to field samples, whereas those of C. antarcticus again decreased (?16.7 ± 9.1). Mites acclimated under field conditions or at +11 °C selected temperatures between ?3 and +1 °C. After acclimation at ?2 °C, both species preferred +1 to +5 °C. Cryptopygus antarcticus maintained under field conditions preferred +5 to +9 °C, whereas individuals acclimated at +11 °C selected +9 to +13 °C. For A. antarcticus, thermopreference was not influenced by its cold hardened state. The distribution of field specimens was further assessed within two combined temperature and humidity gradient systems: (i) 0–3 °C/12% RH, 3–6 °C/33% RH, 6–9 °C/75% RH and 9–12 °C/100% RH and (ii) 0–3 °C/100% RH, 3–6 °C/75% RH, 6–9 °C/33% RH and 9–12 °C/12% RH. In gradient (i), C. antarcticus distributed homogeneously, but, in gradient (ii), C. antarcticus preferred 0–3 °C/100% RH. Alaskozetes antarcticus selected temperatures between 0 and +6 °C regardless of RH conditions. Cryptopygus antarcticus appears better able than A. antarcticus to opportunistically utilize developmentally favourable thermal microclimates, when moisture availability is not restricted. The distribution of A. antarcticus appears more influenced by temperature, especially during regular freeze‐thaw transitions, when this species may select low temperature microhabitats to maintain a cold‐hardened state.  相似文献   

11.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

12.
The marcoalga Ulva pertusa was cultured under (20 ± 2)°C, (20 ± 4)°C, (20 ± 6)°C, (20 ± 8)°C and (20 ± 10)°C circadian rhythms of fluctuating temperature conditions, and constant temperature of 20°C was used as the control. The growth rate of macroalga at (20 ± 2)°C, (20 ± 4)°C and (20 ± 6)°C were significantly higher than that at constant temperature of 20°C, while growth rate at (20 ± 8)°C and (20 ± 10)°C were significantly lower than that at constant temperature of 20°C. The growth rate of macroalga was a quadratic function of the thermal amplitude. Such a growth model can be described by G = β 0 + β 1(TA) + β 2(TA)2, where G represents the relative growth rate, TA is thermal amplitude in degree Celsius, β 0 is the intercept on the G axis, and β 1 and β 2 are the regression coefficients. The optimal thermal amplitude for the growth of thallus at mean temperature of 20°C was estimated to be ± 3.69°C. Analysis of biochemical composition at the final stages of thaulls growth revealed that diel fluctuating temperature caused various influences (P < 0.05). The content of chlorophyll, protein and total solute carbohydrate at (20 ± 2)°C and (20 ± 4)°C were slightly higher than those at constant temperature of 20°C, however no statistically significant differences were found among them (P > 0.05). While osmolytes (total solute carbohydrate and free proline) at (20 ± 10)°C were significantly higher than that at 20°C (P < 0.05). Therefore, more chlorophyll and carbohydrate production might account for the enhancement in the growth of macroalga at the diel fluctuating temperatures in the present study. Handling editor: S. M. Thomaz  相似文献   

13.
L. Boye Jensen 《BioControl》1990,35(2):277-281
The effects of temperature on survival and development of immature stages ofBembidion lampros were examined under controlled conditions in the laboratory. The duration of development was examined at 5°C, 12°C, 17°C, 19°C, 22°C, 25°C, 30°C and 32°C and found to be inversely related to temperature. Between 12°C and 30°C there was a significant difference in duration of egg development, but no significant difference in percentage of eggs hatched. The upper and lower lethal limits for egg development were estimated (c 31°C and 4°C respectively). There are 3 larval instars and one pupal stage. Development of larva plus pupa required a minimum of 20.9 days at 30°C. Between 22°C and 30°C survival from larva to the adult stage was 80%.   相似文献   

14.
The objective of this study was to provide information on changes in the metabolism and swimming ability of juvenile sterlet sturgeon, Acipenser ruthenus, caused by acutely low or high temperatures. Changes in critical swimming speed (Ucrit), oxygen consumption rate (MO2), tail beat frequency (TBF) and tail beat amplitude (TBA) were observed with a Steffensen‐type swimming respirometer, an oxygen electrode and a camera at different swimming speeds at three temperatures: 5°C, 15°C, and 25°C. Fish tested at 5°C and 25°C were maintained at 15°C (near optimal) for one week to simulate conditions below a dam. The Ucrit value decreased significantly during acute temperature changes at 5°C and 25°C; Ucrit was highest near the optimal temperature. Oxygen consumption rate (MO2) increased with the swimming speed at 15°C; however, at 25°C and 5°C, the MO2 decreased with the swimming speed. Both TBA and TBF decreased at 5°C and 25°C compared to values at 15°C. The slopes of the regression lines (TBF/U) at 5°C and 25°C seemed lower compared to 15°C.  相似文献   

15.
We investigated the effect of temperature on development and demographic parameters such as the intrinsic rate of natural increase (r m) of the two spider mite species Tetranychus merganser Boudreaux and T. kanzawai Kishida at eleven constant temperatures ranging from 15 to 40°C at intervals of 2.5°C. Both male and female T. merganser and T. kanzawai completed development from egg to adult at temperatures ranging from 15 to 37.5°C. The longest developmental duration of immature stages was found at 15°C and the shortest developmental duration was found at 35°C for both species. Using linear and non-linear developmental rate models, the lower thermal thresholds for egg-to-adult (female and male) and egg-to-egg development were estimated as 12.2–12.3°C for T. merganser and as 10.8°C for T. kanzawai. The highest developmental rates were observed at around 35°C, whereas the upper developmental thresholds were around 40°C for both species. In fact, at 40°C, a few eggs of either species hatched, but no larvae reached the next stage. The r m-values of T. merganser ranged from 0.072 (15°C) to 0.411 day−1 (35°C), whereas those of T. kanzawai ranged from 0.104 (15°C) to 0.399 (30°C). The r m-values were higher for T. kanzawai than for T. merganser at temperatures from 15 to 30°C, but not at 35°C (0.348 day−1). Total fecundity of T. merganser was also higher than that of T. kanzawai at 35°C. These results indicate that higher temperatures favor T. merganser more than T. kanzawai.  相似文献   

16.
The concentration of potato leafroll luteovirus (PLRV) did not differ in potato plants with secondary infections grown at 15°C or 27°C. Detached leaves of plants grown at 15°C or 27°C were used as sources of PLRV for peach-potato aphids (Myzus persicae Sulz.) both at 15°C and 27°C. At comparable temperature during virus acquisition, aphids which fed on leaves of plants kept previously at 15°C contained more viral antigen detected by ELISA than aphids which fed on leaves of plants grown at 27°C. The aphids which acquired PLRV at 27°C contained evidently more viral antigen than those which acquired PLRV at 15°C. The greatest amount of PLRV was found in the aphids which acquired the virus at 27°C from the leaves of plants kept at 15°C. The ability of M. persicae to transmit PLRV to Physalis ftoridana Rydb. generally decreased with decrease in the amount of PLRV in vectors.  相似文献   

17.
Intramural aeromycological survey was performed at the Central Milk Dairy, Calcutta, covering eight locations within the Dairyusing Burkard personal volumetric air sampler. The locations were butter cold storage (−2 °C), cold store (8 °C), packaging section (23 °C), milk processing section (24 °C), reconstituent of skimmed milk (24 °C), quality control lab (25 °C), raw milk reception (28 °C) and loading dock (26 °C). A number of fungal spores, conidia and mycelia were recorded in different rooms: the highest spore quantity was recorded in the packaging section (23 °C) and the minimum at the butter cold store (−2 °C). The dominant spores consisted of Aspergillus niger, A flavus,Cladosporium sp., Fusarium sp., Curvularia sp.,Alternaria sp., Torula sp., Myrotheciumsp., Helminthosporium sp., Periconia sp.,Nigrospora sp. and Pithomyces sp. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The influences of temperature and host species on the development of the forensically important parasitoid Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae) were studied at six constant temperatures in the range of 15–30°C. T. zealandicus completed development successfully between 15°C and 27°C on five species of Calliphoridae, Calliphora albifrontalis Malloch, Calliphora dubia Macquart, Lucilia sericata Meigen, Chrysomya rufifacies Macquart and Chrysomya megacephala Fabricius. No adult parasitoids emerged from any of the host species reared at 30°C. Temperature and host species significantly influenced development time, emergence success and progeny size. Development was significantly longer on Ch. megacephala and Ch. rufifacies at 18–24°C and significantly longer on Ch. rufifacies and C. albifrontalis at 15°C and 27°C. Parasitoid emergence success was greatest at 21°C, declined at the temperature extremes (15°C and 27°C) and was significantly lower on Ch. megacephala and Ch. rufifacies than on the three other host species. Progeny numbers per host pupa were highest at 21–24°C, declined on either side of this temperature range and were significantly lower on L. sericata, Ch. rufifacies and Ch. megacephala than on either C. dubia or C. albifrontalis. An effect of host species on sex ratio was only observed at 27°C, at which a higher proportion of T. zealandicus females emerged from Ch. megacephala and Ch. rufifacies than from the other host species. The thermal requirements for development (developmental thresholds, thermal constant, optimum temperature) of T. zealandicus in each host species were estimated using linear and non‐linear models. Upper and lower developmental thresholds ranged between 29.90°C and 31.73°C, and 9.73°C and 10.08°C, respectively. The optimum temperature for development was estimated at between 25.81°C and 27.05°C. Given the significant effect of host species on development time, the use of parasitoid–host‐specific developmental data in forensic application is recommended.  相似文献   

19.
The present study scrutinised how far temperature would affect the velocity of the insecticidal activity of Bacillus thuringiensis, as the rapidity of pest control achievements is of a great concern. Third instar Spodoptera littoralis larvae were treated with Bt at three concentration levels under five different temperatures (15°C, 20°C, 25°C, 30°C and 35°C). LT50s were evaluated in each case. The LT50 values showed various levels of reductions as temperature and/or Bt concentration increased, indicating that the velocity of mortality (1/LT50) and/or the rapidity of Bt activity was almost temperature dependant. However, relatively high and low reduction percentages in the LT50 values on the elevation of 5°C were obtained at lower and higher temperature ranges, respectively. The temperature coefficient, Q 10 values, determined within narrow ranges (5°C) showed great reductions when temperature increased from 15°C to 20°C at all Bt concentrations. Raising temperature by 5°C above 20°C or 25°C almost caused similar Q 10 values indicating constant increase in the response of Bt activity within 20–30°C temperature range. Q 10 values over 30°C were comparatively very low. This proved that decrease in Q 10 values due to the rise of temperature was dependant on the starting temperature.  相似文献   

20.
Feeding behavior of Plutella xylostella under optional to non-optional conditions was studied at 10°C, 15°C, 20°C, and 25°C on Indian mustard, Brassica juncea. The study reveals that the variety Pusa Bahar was significantly less preferred by the larvae as compared with Pusa Bold and Varuna under optional to non-optional conditions. Larvae of P. xylostella consumed more food at 25°C than 20°C, 15°C and 10°C. Larval survival was found to be highest on cabbage (control) as compared with Indian mustard and was found to vary with host plants and temperature. The larval survival decreased to 11.29% on Pusa Bahar at 10°C. Increasing the temperature from 10°C to 20°C, larval mortality resulted more on Varuna than Pusa Bahar and Pusa Bold. Developmental period was prolonged on Pusa Bold at 10°C while it was shortest on cabbage at 25°C. A total of 536.47 degree days were required to complete the development by immature stages on Varuna at 25°C and 421.64 degree days on cabbage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号