首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the protein kinase A (PKA) signaling system is necessary for FSH-induced granulosa cell differentiation, but it is not known whether activation of PKA is sufficient to account for the complex pattern of gene expression that occurs during this process. We addressed this question by infecting granulosa cells with a lentiviral vector that directs the expression of a constitutively active mutant of PKA (PKA-CQR) and compared the cellular responses to PKA-CQR with cells stimulated by FSH. Expression of PKA-CQR in undifferentiated granulosa cells resulted in the induction of both estrogen and progesterone production in the absence of cAMP. The stimulatory effects of both PKA-CQR and FSH on estrogen and progesterone production were suppressed by the PKA inhibitor H-89 and were mimicked by PKA-selective cAMP agonists. mRNA levels for P450scc and 3beta-HSD were induced to a similar extent by FSH and PKA-CQR, whereas mRNA levels for P450arom and the LHr were induced to a greater extent by FSH. Microarray analysis of gene expression profiles revealed that the majority of genes appeared to be comparably regulated by FSH and PKA-CQR but that some genes appear to be induced to a greater extent by FSH than by PKA-CQR. These results indicate that the PKA signaling pathway is sufficient to account for the induction of most genes (as identified by microarray analysis), including those of the progesterone biosynthetic pathway during granulosa cell differentiation. However, optimal induction of aromatase, the LHr, and other genes by FSH appears to require activation of additional signaling pathways.  相似文献   

2.
3.
J B Davoren  A J Hsueh 《Life sciences》1986,39(13):1143-1150
The effects of cell plating density on granulosa cell sensitivity to follicle-stimulating hormone (FSH) were investigated, using a serum-free culture of cells obtained from immature, estrogen-treated rats. The cells were incubated at densities of 0.25 to 5 X 10(5) cells/dish with increasing concentrations of FSH for 2 days, and medium estrogen and progestin accumulation were measured by radioimmunoassay. Per-cell estrogen and progestin production rose with increasing FSH concentration and cell density up to 2 X 10(5) cells/dish. At a higher density (5 X 10(5)/dish), per-cell estrogen production fell; progestin production remained constant, although the major progestin produced was no longer progesterone, but rather its metabolite, 20 alpha-hydroxy-progesterone. The effects of changing cell density could not be accounted for by medium steroids or cytotoxic substances. It is concluded that in vitro plating density can markedly affect granulosa cell sensitivity to FSH. In vivo, changing intrafollicular cell densities may thus affect the ability of the whole cell complement to respond to gonadotropin.  相似文献   

4.
Erythroid differentiation factor (EDF), inhibin beta A-homodimer, induced expression of follicle stimulating hormone receptors on rat granulosa cells prepared from diethylstilbestrol primed immature female rats. After 3 day incubation with EDF, the number of FSH receptors on the granulosa cells was increased to about 3.5 times of the control value in a dose dependent manner with an ED50 value of 61 ng/ml. On the other hand, EDF related peptides, i.e., bovine 32K Da inhibin A and TGF beta, had no effect on the FSH receptor induction. The present observation suggests that EDF may play a role in the initiation of the cytodifferentiation of ovarian granulosa cells.  相似文献   

5.
Successful development of mammalian oocytes requires correct interactions between developing oocytes and associated granulosa cells. Development of oocyte-granulosa cell complexes from preantral follicles in vitro does not produce oocytes competent to develop to blastocysts at the same frequency as for oocytes that develop in vivo. Addition of either FSH or insulin to cultures of oocyte-granulosa cell complexes does not improve the frequency of blastocyst development, and the combination of both insulin and FSH is deleterious. Here, high-resolution 2-dimensional PAGE (2D-PAGE) and computerized gel image analysis were used to compare patterns of protein synthesis in cumulus cells and mural granulosa cells of small antral follicles, and then to assess effects of FSH and insulin on the differentiation of oocyte-associated granulosa cells (OAGCs) in vitro. Culture of OAGCs without FSH or insulin resulted in failure to synthesize many proteins at rates characteristic of cumulus cells. Either hormone used alone caused many cumulus cell proteins that were decreased in control cultures to be synthesized at nearly normal cumulus cell rates, and also caused the synthesis of other proteins to be increased or decreased. The two hormones added together produced the greatest change in protein synthetic pattern, including overexpression or underexpression of many proteins not affected by either hormone alone. Addition of these hormones to culture media thus appeared insufficient to elicit a normal cumulus cell phenotype in OAGCs and could lead to complex changes in protein synthesis that may be deleterious to oocyte development. The high-resolution 2D-PAGE approach described here should be a valuable tool in studies on oocyte and granulosa cell development in vitro, since phenotype can be evaluated globally through the display of over 1000 newly synthesized proteins rather than relying upon the expression of just a few genes.  相似文献   

6.
The divalent cations magnesium, calcium and manganese, and the monovalent cation, potassium, but not sodium, enhance binding of [125I]iodo-porcine follicle-stimulating hormone to follicle-stimulating hormone (FSH) receptors in membranes of porcine granulosa cells via an increase in the apparent number of binding sites. The objective of the present studies was to determine if increased binding of FSH to its receptor causes increased adenylyl cyclase activity in response to FSH, or conversely, if enhancement of the cyclase or one of its components causes increased binding, or if the two processes are modulated independently. MgCl2 and CaCl2, which both enhance binding in intact cells and in cell-free membrane preparations, had opposite effects on cyclase-MgCl2 stimulatory, CaCl2 inhibitory. In isotonic NaCl, MgCl2 did not enhance binding, but it did increase FSH-stimulated production of cyclic adenosine 3',5'-monophosphate (cAMP). NaCl did not enhance FSH binding and it did not enhance cyclase in cell-free membranes, but it did increase FSH- and forskolin-stimulated cAMP production in intact cells. In intact cells, maximally effective concentrations of MgCl2 and KCl were additive in enhancing cAMP production whereas the effects of NaCl and KCl together were synergistic. The results indicate that although cationic effects on FSH binding are not causally related to effects on cyclase, the cationic microenvironment of the granulosa cell membrane is critical to both FSH receptor and adenylyl cyclase functions.  相似文献   

7.
Interleukin-1 beta (IL-1 beta), one of the polypeptide lymphokines released in response to antigen, toxins, injury or inflammation by nearly all cell types, has multiple systemic effects. In the present study the effect of IL-1 beta on follicle stimulating hormone (FSH)-induced estrogen production in primary culture was investigated. Granulosa cells obtained from immature estrogen-treated female rats were cultured for 3 days with increasing doses of FSH (1-30 ng/ml) with or without increasing doses of IL-1 beta (2-20 U/ml). The FSH stimulated estrogen production is dose-dependent, whereas IL-1 beta alone did not affect estrogen biosynthesis. In contrast, simultaneous treatment with IL-1 beta caused a dose-dependent inhibition of FSH action. This inhibitory effect of IL-1 beta was evident 48 h after the treatment. Furthermore, IL-1 beta inhibited forskolin (10(-5) mmol/L) and (Bu)2 cAMP (10(-2) mmol/L)-stimulated estrogen production, indicating a post-cyclic AMP site of action. The present study suggests that IL-1 beta is a potent modulator of granulosa cell steroidogenesis. Decreased estrogen formation may contribute to the follicle atresia and the impaired reproductive functions during injury and inflammation.  相似文献   

8.
Most studies have shown that the immune and inflammatory actions of interleukin-1 alpha and beta exhibit the identical biological spectrums of activity with similar dose-response curves. We have previously demonstrated that interleukin-1 beta suppresses follicle-stimulating hormone-induced differentiation of ovarian granulosa cells. In these experiments, we show that although the human recombinant preparations of interleukin-1 alpha and beta exhibit a similar directional inhibition of ovarian granulosa cell differentiation, there is a significant difference in the dose-response relationships between the two forms. Interleukin-1 beta was 31 times and 18 times more potent than interleukin-1 alpha in suppressing follicle-stimulating hormone-induced luteinizing hormone receptor development and progesterone secretion, respectively, from rat granulosa cells. However, there was no difference in the dose-dependent activities of interleukin-1 alpha and beta in stimulating murine thymocyte proliferation. These results suggest that interleukin-1 beta is more effective in influencing ovarian granulosa cell function than interleukin-1 alpha.  相似文献   

9.
Effects of interleukin-1 (IL-1) on FSH-induced differentiation of immature porcine granulosa cells in vitro were examined in short-term (48-h) cultures. IL-1 inhibited FSH induction of aromatase activity and of LH-stimulated cAMP accumulation by granulosa cells. Both these inhibitory actions of IL-1 were concentration-dependent. Significant inhibitory effects were observed with as low as 0.05-0.25 ng/ml of IL-1, with maximal effects at 25 ng/ml. IL-1 also significantly inhibited increases in [125I]iodo-LH binding and progesterone secretion induced by FSH, as well as reducing basal levels of aromatase activity and LH-stimulated cAMP accumulation. Studies on the mechanisms of IL-1 actions on FSH-induced differentiation of immature porcine granulosa cells revealed that IL-1 reduced cAMP accumulation by the cells in response to FSH in a time- and concentration-dependent manner. IL-1 also inhibited induction of aromatase activity and LH-stimulated cAMP accumulation induced by dibutyryl cAMP, suggesting that IL-1 also affects the steps distal to cAMP generation. In contrast, IL-1 had no effect on progesterone secretion induced by dibutyryl cAMP, suggesting that post-cAMP steps of progesterone secretion were unaffected by IL-1.  相似文献   

10.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

11.
12.
To determine the effects of adenosine on follicle-stimulating hormone (FSH)-induced differentiation, granulosa cells isolated from the ovaries of diethylstilbestrol-treated immature rats were cultured with increasing concentrations of the nucleoside and modulators of adenosine action. Although adenosine had no effect on basal granulosa cell function during 48 h of culture, concentrations of the nucleoside from 10 microM to 1 mM progressively inhibited FSH-induced responses, including progesterone production and expression of FSH and luteinizing hormone (LH) receptors. Adenosine had biphasic effects on FSH-stimulated cAMP accumulation, causing inhibition of cAMP production at 10 to 100 microM and stimulation at higher concentrations. The enhancement of cAMP production by 1 mM adenosine occurred during the first 24 h of culture, while both 100 microM and 1 mM adenosine reduced FSH-stimulated cAMP production from 24 to 48 h. The inhibitory effects of adenosine were prevented by adenosine deaminase and dipyridamole, an inhibitor of adenosine transport, and were antagonized by 1-methyl-3-isobutylxanthine. The inhibition of cAMP and progesterone production by adenosine was partially overcome when cells were washed and reincubated with forskolin, but not with FSH. Adenine, guanosine, and inosine at concentrations of 100 microM did not modify FSH-induced cAMP formation or LH receptor induction. These results indicate that adenosine exerts predominantly inhibitory actions on hormone-induced granulosa cell differentiation, as manifested by prominent reductions in steroidogenesis and gonadotropin receptor expression.  相似文献   

13.
Follicle-stimulating hormone is the major regulator of growth and development of antral follicles in the ovary. Granulosa cells (GCs) in these follicles are coupled via gap junctions (GJs) consisting of connexin 43 (Cx 43). Because we and others have found that Cx 43 and GJs, respectively, are more abundant in large antral follicles compared with small antral and preantral follicles, we hypothesized that FSH may control Cx 43 gene expression, GJ formation, and intercellular communication. To directly address these points, we chose a rat GC line (GFSHR-17) expressing the FSH receptor and the Cx 43 gene. The functionality of FSH receptors was shown by the effects of porcine FSH, namely cell rounding, reduced cellular proliferation, and stimulation of progesterone production of GFSHR-17 cells, which are effects that were detectable within hours. Treatment with FSH also statistically significantly increased Cx 43 mRNA levels, as shown after 6 to 9 h in Northern blots. These effects were antedated by altered GJ communication, which was observed within seconds. Using a single-cell/whole-cell patch clamp technique, we showed that FSH rapidly and reversibly enhanced electrical cell coupling of GFSHR-17 cells. Increased GJ communication was associated with statistically significantly decreased phosphorylation of Cx 43, which was observed within 10 min after FSH addition, during immunoprecipitation experiments. Our results demonstrate, to our knowledge for the first time, that the gonadotropin FSH acutely and directly stimulates intercellular communication of GFSHR-17 cells through existing GJs. Moreover, FSH also increases levels of Cx 43 mRNA. These changes are associated with reduced proliferation and enhanced differentiation of GFSHR-17 cells. In vivo factors in addition to FSH may be involved in the regulation of GJ/GJ communication between GCs in the follicle, but our results suggest that improved cell-to-cell coupling, enhanced Cx 43 gene expression, and possibly, formation of new GJs are direct consequences of FSH receptor activation and may antedate and/or initiate the pivotal effects of FSH on GCs.  相似文献   

14.
1. Short-term effects of lipolytic agents in the absence or in the presence of insulin on fatty acid biosynthesis have been examined, in terms of the control rate of [1-14C]acetate incorporation into labeled fatty acids in the presence of glucose, as stimulator of lipogenesis by generating NADPH for the process. 2. The relationship between lipogenesis and lipolysis in the absence or in the presence of insulin was compared with a variety of adenylate cyclase activators. 3. The data obtained reveal that a reciprocal relationship exists between lipogenesis and lipolysis. 4. The changes in the activity of hexose monophosphate shunt produced by activation or inhibition of lipogenic process has been studied. 5. The regulation of the hexose monophosphate shunt activity mainly by the intracellular fatty acyl-CoA concentration and NADPH/NADP ratio is discussed.  相似文献   

15.
Stimulation of the D-2 dopamine receptor inhibits pro-opiomelanocortin (POMC) synthesis in isolated rat intermediate lobe tissue. Intermediate lobe tissue was incubated in the absence or presence of various dopaminergic compounds, and then its capacity to incorporate [3H]tyrosine into POMC was tested. D-2 dopaminergic agonists caused a dose-dependent inhibition of POMC synthesis; the maximal inhibitory effect was approximately a 50% reduction in the amount of POMC synthesized. D-2 dopaminergic antagonists blocked the inhibitory effect of each agonist. Pretreatment of the tissue with pertussis toxin abolished the D-2 dopaminergic inhibition of POMC synthesis. The potency of pertussis toxin in abolishing the dopaminergic inhibition of POMC synthesis corresponded to its potency in abolishing the D-2 dopaminergic inhibition of adenylate cyclase activity. Cholera toxin, forskolin, and 8-bromo-cAMP, compounds that activate the cAMP pathway, enhanced the capacity of intermediate lobe tissue to synthesize POMC and counteracted the dopaminergic inhibition of POMC synthesis. Incubation of intermediate lobe tissue for 24 h with bromocriptine, a D-2 dopaminergic agonist, decreased the POMC mRNA content by 46% as determined by hybridization of RNA to a 32P-labeled probe. Incubation of intermediate lobe tissue with forskolin increased the level of POMC mRNA; incubation of the tissue with a combination of bromocriptine and forskolin also resulted in an increase in the level of POMC mRNA. It is proposed that Ni, the inhibitory guanyl nucleotide binding protein, and possibly adenylate cyclase mediate the dopaminergic inhibition of POMC synthesis.  相似文献   

16.
Stimulation of rat Sertoli cell adenylate cyclase by germ cells in vitro   总被引:1,自引:0,他引:1  
The effect of germ cells or germ cell fractions on adenylate cyclase (AC) activity in membrane preparations from cultured rat Sertoli cells has been examined. Whole germ cells or 30,000 X g pellet or supernatant fractions of germ cells have the ability to stimulate Sertoli cell AC to levels comparable to those measured in follicle-stimulating hormone-stimulated Sertoli cell membranes. Treatment at 100 degrees C but not 60 degrees C for 1 min abolished the ability of germ cell preparations to stimulate Sertoli AC. Germ cell stimulation of Sertoli cell AC was not calcium dependent, was not blocked by propranolol, and was observed to be dose dependent.  相似文献   

17.
T Mori  M Fukuoka  K Yasuda  K Takakura  T Iwai  S Taii 《Steroids》1989,54(5):543-552
Increasing evidence suggests that functions of the immune system and gonads are closely related with each other. In cultures of granulosa and luteal cells, macrophages have been shown to modulate steroidogenic functions. In this paper we present the modulatory effects of interleukin-1, a cytokine produced predominantly by activated macrophages, on gonadotropin-induced differentiation, as well as growth of cultured porcine granulosa cells.  相似文献   

18.
The effect of follicle-stimulating hormone (FSH) and testosterone (T) on rat granulosa cell progestin metabolism was investigated by incubation of the cells for 24 h with FSH and/or T and subsequent reincubation with an appropriate rabiolabeled steroid for 3 h. Exposure to varying concentrations of FSH (8-1000 ng/ml) and T (4-500 nM) decreased overall 4-[14C] progesterone utilization and accumulation of 20 alpha-reduced metabolites of progesterone in a dose-related manner. The accumulation of 5 alpha-reduced metabolites was not markedly changed by FSH and T treatments. Treatments with FSH and/or T decreased utilization of all progestins studied: progesterone by 30-50%, 20 alpha-hydroxy-4-pregnen-3-one by 23-31%, 3 alpha-hydroxy-5 alpha-pregnan-20-one by 41-64%, and 5 alpha-pregnane-3 alpha,20 alpha-diol by 26-34%. The greatest effects were observed following FSH + T treatments. Decreased utilization of substrates was associated with the decrease of 20 alpha-hydroxy-steroid dehydrogenase activity; the conversion of progesterone to 20 alpha-hydroxy-4-pregnen-3-one was decreased by 44-62%, the conversion of 20 alpha-hydroxy-4-pregnen-3-one to progesterone was decreased by 41-61%, the conversion of 3 alpha-hydroxy-5 alpha-pregnan-20-one to 5 alpha-pregnane-3 alpha,20 alpha-diol was decreased by 42-69%, and the conversion of 5 alpha-pregnane-3 alpha,20 alpha-diol to 3 alpha-hydroxy-5 alpha-pregnan-20-one was decreased by 53-60%. The incubation of granulosa cells with cyanoketone (10(-6)M), an inhibitor of delta 5,3 beta-hydroxysteroid dehydrogenase, virtually eliminated de novo progesterone production but did not alter the inhibitory effect of FSH and T on radiolabeled progesterone utilization and accumulation of 20 alpha-reduced metabolites, indicating that the observed effects are not influenced by endogenous production of progesterone. It was concluded from these studies that both FSH and testosterone inhibit the 20 alpha-hydroxysteroid dehydrogenase activity and consequently decrease progesterone catabolism by granulosa cells.  相似文献   

19.
Since fibronectin is a secretory product of immature rat granulosa cells in culture and may contribute to the follicular microenvironment in vivo, we have studied the effects of this adhesion factor on follicle-stimulating hormone (FSH)-dependent differentiation in short-term (2-3-day) cultures and on growth and protein synthesis in long-term (12-day) cultures. In comparison with cells plated on tissue culture plastic, those plated on an optimal fibronectin-coated substratum showed much greater cell spreading. There were no short-term effects of this morphological change on FSH-stimulation of cyclic AMP production, apparent activities of aromatase or cholesterol side-chain cleavage enzymes, or acquisition of luteinizing hormone (LH) responsiveness in cultured cells. However, progesterone metabolism to 20 alpha-hydroxypregnan-4-en-3-one was increased. Only cultures on fibronectin showed increases between days 3 and 9 in protein (2.5-fold) and DNA (1.4-fold) contents. Cells cultured on fibronectin also showed greater uptake and incorporation of [3H]leucine in comparison with cells cultured on plastic. FSH treatment caused cell aggregation and rounding and delayed the increase in protein content of cells cultured on fibronectin. The results presented demonstrate that the principal direct effect of fibronectin-mediated adhesion on rat granulosa cells is to enhance cell maintenance and growth, while having no generalized action on FSH-dependent differentiation.  相似文献   

20.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号