首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study has investigated the role of protein kinase C (PKC) activation in IgG-mediated phagocytosis by human monocytes. Incubation of monocytes with IgG-opsonized targets increased membrane-associated PKC approximately 2-fold. Kinetic studies showed that the translocation of PKC to membrane occurred before significant ingestion took place. The pharmacologic PKC inhibitor H7 inhibited IgG-dependent ingestion with ID50 of 20 microM, while the structurally related isoquinoline sulfonamide HA1004 had no effect at this concentration. Staurosporine and calphostin C, PKC inhibitors which have different mechanisms of actions than H7, also inhibited ingestion. Depletion of PKC by prolonged incubation with phorbol esters also inhibited phagocytosis, and dose-response curves showed a strong correlation between the extent of PKC depletion and the extent of inhibition of ingestion. Finally, phagosomes were isolated by sucrose density centrifugation of cells disrupted 5 min after the initiation of phagocytosis. Measurement of PKC activity and immunoreactivity in the phagosomes showed that PKC was concentrated in the phagosome membrane approximately 5-fold compared to the uninvolved plasma membrane. Together, these data suggest that PKC activation is an early, essential step in the efficient ingestion of IgG-opsonized targets by monocytes.  相似文献   

2.
Phospholipase D (PLD) plays an important role in signaling through phosphatidylcholine (PC) and in the production of superoxide (respiratory burst) by polymorphonuclear leukocytes (PMN) stimulated by the chemoattractant fMet-Leu-Phe (fMLP). However, the regulation of PLD activity by protein kinases is not fully understood. In the present study, we have used a mitogen-activated protein (MAP) kinase inhibitor (PD 98059) to investigate a possible connection between extracellular signal-regulated kinase (ERK) and PLD activity and respiratory burst. Using a range of concentrations (3-20 microM) which inhibit ERK activity, PD 98059 inhibited PLD activity induced by fMLP in cytochalasin B-primed PMN, as assessed by production-tritiated phosphatidylethanol (PEt), phosphatidic acid (PA), and hydrolysis of PC. However, the inhibition was partial (approximately 50%), while inhibition of PC hydrolysis was almost complete, suggesting a concomitant inhibition of PLA2 activity. In addition, PD 98059 reduced fMLP-induced respiratory burst by 50%, an effect which was correlated with PLD inhibition of PLD (r = 0.981, P < 0.01), and neither did PD 98059 inhibit the PLD activity and respiratory burst induced by PKC upon its direct activation by phorbol myristate acetate. These data provide the first evidence for implication of the ERK cascade in the stimulation of PLD through Gi signaling. They further indicate that PLD stimulation by fMLP receptors occurs through two pathways, dependent and independent on MAP kinase, the former pathway being linked to superoxide production.  相似文献   

3.
Activated human polymorphonuclear neutrophils (PMNs) convert molecular oxygen into superoxide anion, a process known as the respiratory burst, through the activity of a latent multicomponent NADPH-dependent oxidase. Components of this respiratory burst oxidase include the membrane-bound cytochrome b558 and the cytosolic factors p47-phox and p67-phox. We initiated these studies based on three observations: 1) that stimulation of PMN oxidase activity is associated with translocation of the cytosolic oxidase components to the plasma membrane; 2) that p47-phox is phosphorylated during PMN activation and that there is a sequential relationship between phosphorylation of p47-phox in the cytosol and appearance of the phosphoprotein in the membran; and 3) that the predicted amino acid sequences of p47-phox and of p67-phox contain regions of homology to the SH3 or A domain of the src family of tyrosine kinases, a region found in a variety of proteins which interact with the cytoskeleton or the subplasmalemmal cytoskeleton. Thus the purpose of our studies was to examine the role of protein kinase C (PKC)-dependent phosphorylation in the stimulus-induced association of p47-phox and p67-phox with the plasma membrane and the cytoskeleton. Using the PKC activator phorbol myristate acetate (PMA) as the agonist, we found that activation of the respiratory burst oxidase was associated with translocation of cytosolic p47-phox and p67-phox to the plasma membrane as well as redistribution of p47-phox to the Triton-insoluble cytoskeleton. Furthermore, the PKC inhibitor staurosporine inhibited phosphorylation of p47-phox, interrupted the redistribution of cytosolic oxidase factors, and blocked PMA-induced generation of superoxide anion. Taken together these results indicate that PKC-dependent phosphorylation of p47-phox correlates with association of p47-phox with the cytoskeleton and with translocation of p47-phox and p67-phox to the plasma membrane, with the ensuing assembly of an active superoxide-generating NADPH-dependent oxidase.  相似文献   

4.
Staurosporine (STAR), a potent protein kinase C (PKC) antagonist, was found to modulate the chemoattractant-induced respiratory burst of human polymorphonuclear leukocytes (PMNs) according to drug concentration. Low STAR concentrations from 10 to 200 nM potentiated the N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet activating factor (Paf)-induced respiratory burst, affecting both the initial rate and the total amount of superoxide anion generated. The maximal increase occurred in the presence of 100 nM STAR and optimal fMLP concentration and reached 60-100% of control values. Above 250 nM, STAR inhibited the respiratory burst with an IC50 of 360 and 320 nM for fMLP and Paf, respectively. The respiratory burst induced by PKC activators such as phorbol myristate acetate or phorbol 12, 13 dibutyrate was inhibited effectively by STAR, with a low IC50 (25 nM) for both stimuli. Thus, the use of low STAR concentrations points to two possible roles of PKC in the regulation of NADPH oxidase activity, i.e. a positive regulation in phorbol ester-treated cells and a negative regulation in chemoattractant-stimulated PMNs.  相似文献   

5.
The superoxide anion generation in Ehrlicg ascites tumour (EAT) cells increased more than two-fold in the presence of the tumour promoter, tetradecanoyl phorbol myristate acetate (TPA). Epinephrine and dibutryl cAMP (Bt2 cAMP) inhibited in a dose-dependent manner, both basal and TPA-triggered superoxide generation in EAT cells. The kinetics of inhibition of superoxide generation showed a maximum inhibition between 30 and 40 min of preincubation with epinephrine or Bt2 cAMP of EAT cells and coincided with an increase in activity of a phosphoprotein phosphatase. In TPA-treated EAT cells, epinephrine or Bt2 cAMP increased the phosphatase activity in a dose-dependent manner. In vitro EGTA, EDTA and sodium fluoride inhibited phosphatase activity. Superoxide generation in response to TPA in Triton-permeabilized EAT cells was inhibited by inclusion of the phosphatase in the assay. Taken together, these results clearly suggest that the phosphatase activity in EAT cells develops as a result of protein kinase A (PKA) and protein kinase C (PKC)-mediated phosphorylation of the phosphatase which then mediates dephosphorylation of the PKC-triggered phosphorylation of proteins to inhibit respiratory burst. A cross-talk between PKA and PKC pathways negatively modulates superoxide generation in EAT cells.  相似文献   

6.
The roles of calmodulin and protein kinase C in the activation of the human neutrophil respiratory burst were characterized pharmacologically. The protein kinase C inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and N-(2-aminoethyl)-5-isoquinolinesulfonamide (H-9) did not inhibit superoxide anion generation by neutrophils stimulated for 30 minutes with N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) or 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). However, H-7 did depress superoxide production during the first 5 minutes following stimulation. In contrast, the specific calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and the dual calmodulin antagonist/protein kinase C inhibitor trifluoperazine (TFP) were potent inhibitors of the response throughout the 30 minute incubation. Stimulation of neutrophils with submaximal doses of FMLP or PMA failed to promote inhibition of the respiratory burst by H-7 or H-9, but did stimulate a respiratory burst response which was not inhibited by TFP or W-7. These results suggest that while protein kinase C may play a role in the initiation of the respiratory burst response, propagation of the response is dependent on calmodulin-dependent processes. The inability of TFP and W-7 to inhibit superoxide anion generation in response to submaximal stimulatory doses of FMLP or PMA suggests that calmodulin-independent processes may also be involved in activation of the respiratory burst.  相似文献   

7.
In this study, the underlying mechanisms of stimulation by cyclocommunin, a natural pyranoflavonoid, of respiratory burst in rat neutrophils was investigated. Cyclocommunin evoked a concentration-dependent stimulation of superoxide anion (O2*-) generation with a slow onset and long lasting profile. The maximum response (16.4+/-2.3 nmol O2*-/10 min per 10(6) cells) was observed at 3-10 microM cyclocommunin. Cyclocommunin did not activate NADPH oxidase in a cell-free system. Cells pretreated with pertussis toxin or n-butanol did not affect the cyclocommunin-induced O2*- generation. However, a protein kinase inhibitor staurosporine and EGTA greatly reduced the O2*-generation caused by cyclocommunin. Treatment of neutrophils with phorbol 12-myristate 13-acetate (PMA), but not with formylmethionyl-leucyl-phenylalanine (fMLP), for 20 min significantly reduced the O2*- generation following the subsequent stimulation of cells with cyclocommunin. Cyclocommunin did not affect the cellular mass of phosphatidic acid (PA). Neither the tyrosine kinase inhibitor, genistein, nor the p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, affected cyclocommunin-induced O2*- generation. The enzyme activities of neutrophil cytosolic and membrane-associated protein kinase C (PKC) were both increased significantly with 100 microM cyclocommunin. The membrane-associated PKC-theta and PKC-beta were increased following the stimulation of neutrophils with 30 and 100 microM cyclocommunin, respectively. Cyclocommunin reduced the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to cytosolic PKC in a concentration-dependent manner. Cyclocommunin (> or =3 microM) significantly evoked a slow and long lasting [Ca2+]i elevation in neutrophils, and a phospholipase C (PLC) inhibitor U73122 greatly inhibited these Ca2+ responses. Moreover, the increase in cellular inositol bis- and trisphosphate (IP2 and IP3) levels were observed in neutrophils stimulated with 30 microM cyclocommunin for 3 min. Collectively, these results indicate that the stimulation of respiratory burst by cyclocommunin is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.  相似文献   

8.
The mechanism and process of production of active oxygen radicals in the respiratory burst of polymorphonuclear leukocytes (PMN) stimulated with PMA (phorbol myristate acetate) was studied in this paper. The experimental results indicate that when the PMA was dilute enough or at the beginning of stimulation even when the PMA concentration was high, the spectrum of hydroxyl radical spin adducts, DMPO-OH, was dominant in the ESR spectra. However, at the maximum level of the respiratory burst, the spectrum of superoxide anion spin adducts, DMPO-OOH, was dominant.  相似文献   

9.
The anti-neutrophil mAb PMN 7C3 and IIC4 inhibited the respiratory burst of neutrophils as measured by the generation of superoxide anion or hydrogen peroxide in response to PMA, serum-treated zymosan, and FMLP. To examine the effect of these mAb on neutrophil transmembrane potential, a fluorescent probe was used in a continuous assay. Compared with control cells, antibody-treated neutrophils were partially depolarized at rest and had a blunted response when stimulated. The F(ab)2 fragment of PMN 7C3 had similar effects on both the respiratory burst and transmembrane potential, whereas the Fab fragment did not. The unrelated antineutrophil mAb 31D8 had no effect on either the respiratory burst or on transmembrane potential. Neutrophils suspended in high potassium buffers also exhibited partial depolarization of the resting cell membrane and a blunted depolarization response to stimuli and produced less superoxide anion and hydrogen peroxide in response to stimuli than did control cells in physiologic buffer. Exposure of neutrophils to 2-deoxy-D-glucose resulted in dose- and time-dependent depression of the respiratory burst. 2-Deoxy-D-glucose also caused depolarization of the resting membrane and impaired subsequent stimulus-induced depolarization. Similar effects were seen with addition of iodoacetamide or depletion of glucose. The parallel effects of anti-neutrophil mAb, depolarizing buffers, and glycolytic inhibitors on both neutrophil membrane depolarization and activation of the respiratory burst indicate a close association between these two events. The evidence suggests that the inhibitory effects of these antibodies are mediated through partial membrane depolarization which interferes with signal transduction on subsequent stimulation of the cells. The impairment in oxidative responses to phorbol esters as well as to receptor-dependent activating agents points to interruption at a distal step, e.g., subsequent to Ca2+ mobilization.  相似文献   

10.
The influence of peplomycin (PLM) on the respiratory burst of peripheral blood polymorphonuclear leukocytes (PMN) was investigated. Short-term (5 min) treatment of human PMN with 0.1μg/ml to 100μg/ml of PLM increased phorbol myristate acetate (PMA)-and formyl-methionyl-leucyl-phenylalanine (FMLP)-induced luminol-dependent chemiluminescence. PMN, as well as alveolar macrophages from rabbits treated with 0.5 to 1.0 mg/kg of peplomycin per day for 5 days, generated more superoxide (O2-) than the cells from untreated rabbits. In both PLM-treated and untreated PMN, chemiluminescence induced by FMLP and PMA was decreased to less than 50% of the control by staurosporine, superoxide dismutase (SOD) and catalase. However, the peak intensity in PLM-untrcated PMN was decreased to about 30% of the control by genislein, while this agent induced a slight decrease in peak intensity in the PLM-treated PMN. Inositol triphosphate and diacyl glycerol levels were not clearly increased by PLM, but an increase of intracellular Ca and a shift of protein kinase C (PKC) to the membrane occurred in PMN within 1 min after PLM treatment. Western blotting revealed that the tyrosine phosphorylation of a 115 kDa protein was upregulated by 5 to 50μg/ml of PLM. While, PLM suppressed SOD activity in alveolar macrophages and PMN. These results seem to indicate that PLM increases the respiratory burst of PMN and macrophages both by way of direct PKC activation and by the upregulation of protein tyrosine phosphorylation. This increased reactive oxygen generation, together with the suppression of SOD activity seems to be tissue-impairing.  相似文献   

11.
A specific stimulation of tubulin tyrosinolation in human neutrophils (PMNs) is induced by the synthetic peptide chemoattractant N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), and this stimulation is closely associated with activation of the NADPH oxidase-mediated respiratory burst (Nath, J., and Gallin, J. I. (1983) J. Clin. Invest. 71, 1273-1281). In contrast, along with tubulin tyrosinolation, a distinctly different respiratory burst-associated random posttranslational incorporation of tyrosine into multiple PMN proteins is observed in PMNs stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or sn-1,2-dioctanoylglycerol (DAG). In studies exploring the mechanism(s) of signal transduction for these distinct neutrophil responses, we found that the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation in PMNs and in differentiated HL-60 cells is completely blocked by pertussis toxin, while the PMA-induced random incorporation of tyrosine is not inhibited. We also found that expression of the fMet-Leu-Phe-mediated stimulation of tubulin tyrosinolation in HL-60 cells is correlated with increases in the specific activity of protein kinase C and with the acquisition of respiratory burst activity which occur during induced myeloid maturation of these cells. Furthermore, both the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation and the PMA or DAG-induced random posttranslational incorporation of tyrosine into multiple proteins in activated neutrophils, were found to be reversibly inhibited (greater than 70%) by the protein kinase inhibitors 1-(5-isoquinolinesulfonyl)piperazine (C-I) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), in parallel with inhibition of superoxide (O2-) generation. In related studies, we also found that fMet-Leu-Phe-stimulated O2- production is comparably inhibited by C-I and H-7, but in a highly temperature-dependent manner. Inhibition was observed only when C-I or H-7 is added to PMNs at physiologic temperature, i.e. 37 degrees C. Interestingly, inhibition of the PMA-induced O2- generation by C-I or H-7 was not found to be similarly temperature-dependent. Considered together, these findings argue against the suggestion that there is a protein kinase C-independent pathway for activation of the respiratory burst in neutrophils stimulated with N-formyl peptides.  相似文献   

12.
On the basis of previous observations, we attempted to characterize the effects of various products of phospholipid hydrolysis on neutrophil (PMN) respiratory burst activity. We studied the effects of phos- phorylcholine (PC) and phosphorylethanoline (PE) on superoxide anion production in PMN and in a cell free system. We found that PE but not PC inhibited measured superoxide anion, but that this was not due to inhibition of cellular superoxide generation but to scavenging of generated superoxide anion. Further, utilizing a system based upon the photo-oxidation of O-dianisidine sensitized by riboflavin, we were able to determine that the scavenging effect of PE was not superoxide dismutase (SOD)-like but rather a general scavenging or glutathione (GSH)-like effect. These data underscore the importance of identifying the mechanism of inhibition of superoxide generation by putative inhibitors as being due to a direct cellular effect or to a scavenging property.  相似文献   

13.
We found that rat bone marrow-derived macrophages responded to opsonized zymosan by releasing superoxide anion. However, these cells were defective in the response to the potent oxidative burst activator phorbol myristate acetate (PMA). This result was observed whatever the concentration of agonist used and with different concentrations of cells. Since it is strongly suspected that protein kinase C (PKC) is involved in the transductional pathway induced by PMA in numerous cell types, and particularly in phagocytes, we studied PKC and we observed that it was functional in rat bone marrow-derived macrophages, but only present at a low level. Thus, we suggest that our results are consistent with the possibility that zymosan-induced respiratory burst may be independent of PKC and that these cells may not possess the minimal level of PKC required for responding to PMA.  相似文献   

14.
Inflammatory macrophages elicited from the peritoneal cavity of mice injected with endotoxin can avidly ingest E opsonized with IgG antibody (EIgG) or with IgM antibody and C (EIgMC). However, only ingestion of EIgG is associated with activation of the respiratory burst and release of superoxide anion. We compared the endogenous phosphorylation of proteins from macrophages stimulated by interaction with EIgG or EIgMC on the premise that proteins phosphorylated after stimulation by EIgG but not EIgMC could play a role in activating the enzyme (oxidase) responsible for the respiratory burst. Proteins were separated by one-dimensional and two-dimensional electrophoresis in polyacrylamide gels. We found that proteins with approximate Mr of 20 kDa, 23 kDa, 46 kDa, 48 kDa (three proteins), 67 kDa, and 130 kDa were more heavily phosphorylated after EIgG stimulation than after EIgMC stimulation. Exposure to PMA, which activates the respiratory burst oxidase, induced phosphorylation of the 23-kDa, 48-kDa group, and 130-kDa proteins that were phosphorylated after stimulation by EIgG. Activity of protein kinase C was found to be significantly increased in the particulate fraction of macrophages stimulated by EIgG but not in the particulate fraction of EIgMC-stimulated cells. These data are compatible with the hypotheses that phosphorylation of specific cellular proteins, especially with a Mr of approximately 48 kDa, is involved in activation of the respiratory burst oxidase, and that function of protein kinase C also plays a part in this activation process.  相似文献   

15.
Binding of chemoattractants to receptors on human polymorphonuclear leukocytes (PMN) stimulates the phosphodiesteric cleavage of phosphatidylinositol 4,5-bisphosphate to produce inositol 1,4,5-trisphosphate and 1,2-diacylglycerols. To investigate the possible second messenger function of diacylglycerols in PMN activation, we tested the ability of a series of synthetic sn 1,2-diacylglycerols, known to stimulate protein kinase C in other systems, to promote superoxide anion release, oxygen consumption, lysosomal enzyme secretion, and chemotaxis. None of the diacylglycerols initiated the chemotactic migration of PMN. Several of the diacylglycerols however, were, active in stimulating superoxide anion release and lysozyme secretion, with dioctanoylglycerol (diC8) being the most potent. Unexpectedly, didecanoylglycerol (diC10) induced lysosomal enzyme secretion, but failed to stimulate superoxide production or oxygen consumption. All other biologically active diacylglycerols tested displayed similar EC50 for stimulating lysozyme secretion and superoxide production. The ability of the diacylglycerols to compete for phorbol dibutyrate (PDBu) binding in intact PMN suggested a mechanism for the divergent biological activity of diC10. Although the compounds that stimulated both superoxide production and lysosomal enzyme secretion competed for essentially all [3H]PDBu binding from its receptor, diC10, which only stimulated secretion, competed for 45% of the bound [3H]PDBu. Thus diacylglycerols can selectively activate certain functions of leukocyte chemoattractant receptor. The data suggest that a discrete pool of protein kinase C may mediate activation of the respiratory burst in PMN.  相似文献   

16.
Activation of the respiratory burst in the monocytic cell line U937 by cross-linking human 40-kDa FcR for IgG (Fc gamma RII) with the IgG1 mAb, CIKM5, is dependent on the maturation state of the cell. Addition of anti-Fc gamma RII to undifferentiated cells does not activate the respiratory burst but differentiation with human rIFN-gamma (200 U/ml) for 13 to 15 days results in maximal stimulation by this agonist, with half-maximal responses in cells incubated for 10 to 12 days. During maturation the development of responsiveness to cross-linking Fc gamma RII occurs later than the development of responsiveness to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (maximal responses at 7 to 9 days), or the chemotactic peptide FMLP (half-maximal responses at 7 to 9 days). The late development of maximal Fc gamma RII responses is not associated with either increased Fc gamma RII expression, enhanced calcium mobilization induced by anti-Fc gamma RII, changes in protein kinase C activity (PKC) or a switch in PKC isotype expression. Activation of the respiratory burst via Fc gamma RII may not be mediated by activation of PKC as the kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride inhibited the Fc gamma RII response by less than 20% at concentrations which inhibit the 12-O-tetradecanoylphorbol-13-acetate-induced respiratory burst by more than 80%. IFN-gamma U937 cells did not metabolize incorporated arachidonate into eicosanoids when stimulated with anti-Fc gamma RII, suggesting that eicosanoids do not mediate activation of the respiratory burst, and this was confirmed by the lack of inhibition by the specific 5'-lipoxygenase and glutathione S-transferase inhibitor, piriprost, and the cyclo-oxygenase inhibitor, indomethacin. In addition there was no significant release of radiolabeled arachidonate in response to anti-Fc gamma RII. The response to anti-Fc gamma RII is inhibited by pertussis toxin, suggesting that signal transduction is via a GTP-binding protein. Agents that elevate intracellular cAMP increased the magnitude of the cAMP transients stimulated by anti-Fc gamma RII and also inhibited the respiratory burst. FMLP responses showed a similar pattern of sensitivity to this range of inhibitors, suggesting that both Fc gamma RII and FMLP receptor share common regulatory mechanisms. However, the termination of the respiratory burst activated via Fc gamma RII and FMLP receptor is independently regulated, in that after FMLP-induced activation there is no subsequent inhibition of the Fc gamma RII-mediated response and vice versa.  相似文献   

17.
The respiratory burst and production of oxygen radicals by lymphocytes stimulated with phorbol myristate acetate (PMA) was studied and compared with that of polymorphonuclear leukocytes (PMN) by electron paramagnetic resonance (EPR) and spin trapping technique. Superoxide anion and hydroxyl radicals spin adducts of DMPO were detected in the stimulated PMN system, but only hydroxyl radical spin adducts of DMPO were detected in the stimulated lymphocyte system. It was proved by superoxide dismutase (SOD) and catalase that the hydroxyl radicals produced in the stimulated lymphocyte system came from superoxide anions, just like the hydroxyl radicals produced in the stimulated PMN.  相似文献   

18.
In the present study, we investigated how chrysotile-stimulated macrophages generate superoxide using murine peritoneal macrophages, with special attention to the modulatory role of phospholipase A(2) (PLA(2)). We examined the effects of the following inhibitors and antagonists for signaling molecules on the superoxide anion (O(-)(2)) production of chrysotile-stimulated macrophages: p-bromophenacyl bromide (pBPB) and mepacrine for PLA(2); islet-activating protein (IAP) for G-protein; H-7 for protein kinase C (PKC); AA861 for 5-lipoxygenase (5-LO); indomethacin for cyclo-oxygenase (COX); ETYA for both 5-LO and COX; hexanolamine PAF for platelet-activating factor (PAF). The PLA(2) and PKC inhibitors effectively inhibited the chrysotile-induced superoxide anion production of macrophages, but not the G-protein inhibitor, the 5-LO and COX inhibitors, and the PAF antagonist. We also examined the effects of the PLA(2) inhibitors on macrophages stimulated by phorbol 12-myristate 13-acetate (PMA) which directly activates PKC. The two structurally different PLA(2) inhibitors showed differential effects on the PMA-induced superoxide generation: pBPB inhibited it but mepacrine did not. These results suggested that (1) PLA(2) and PKC modulate the chrysotile-induced O(2) production, and (2) two different kinds of PLA(2) work upstream and downstream of PKC, but (3) G-protein, 5-LO and COX metabolites, and PAF have no modulatory role in the reaction.  相似文献   

19.
To transmit the information inside the cell, one possibility is the action of an enzyme called kinase that phosphorylates other proteins. To study these enzymes, chemical compound synthesis was needed to know the function and the mechanism of activation. The major difficulty is creating a specific molecule for one kinase. In this study, we test the action of Rho-kinase inhibitors (HA-1077 and Y-32885) on protein kinase C (PKC) in the respiratory burst in the human polymorphonuclear neutrophils. We have shown that these compounds could inhibit the anion superoxide production. To prove their action on PKC, we have shown a decrease of binding of a specific ligand (phorbol-12,13-dibutyrate) with each inhibitor. During its activation, PKC was translocated from the cytoplasm to the plasmic membrane. We have also shown an inhibition of this translocation, proving an inhibition of PKC by HA-1077 and Y-32885.  相似文献   

20.
The calmodulin antagonist N(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7) has been examined as an inhibitor of superoxide anion production and granule exocytosis in phorbol ester (PMA)-activated neutrophils. Inhibition of the respiratory burst was observed at a concentration of W-7 identical to that required for inhibition of native protein kinase C (PKC), whereas the concentration required to inhibit the secretory response was found to correspond to that required for inhibition of the proteolytically converted fully active PKC. The IC50 of W-7 was in both cases 5 and 12 fold higher than that required for inhibition of calmodulin dependent kinases. The results confirm the essential role for the membrane-bound PKC in the production of O2- radicals and provide a clear evidence of the direct participation of the proteolytically activated cytosolic PKC to the secretory response of PMA activated neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号