首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five temperature-sensitive mutants of simian virus 40 containing two temperature-sensitive mutations were isolated. The double mutant of the A and D complementation groups, like the D mutants, failed to complement by conventional complementation analysis and did not induce host DNA synthesis at 40 degrees C. However, under conditions that suppressed the D defect, the A:D double mutant expressed only the A defect. Thus, viral DNA replication dropped rapidly after this mutant was shifted from permissive to restrictive temperatures. The A:D double mutant failed to transfrom at the restrictive temperature when subconfluent Chinese hamster lung monolayers were used. Double mutants of A:B, A:C, and A:BC complementation groups, like their A parent, were defective in viral DNA replication, in the induction of host DNA synthesis and in the transformation of secondary Chinese hamster lung cells at the nonpermissive temperature.  相似文献   

2.
Accumulation of l-alpha-glycerophosphate, in cells of Bacillus subtilis mutants lacking the nicotinamide adenine dinucleotide-independent glycerophosphate dehydrogenase activity, suppresses both growth and sporulation. After growth has stopped, the cells slowly develop one and later more asymmetric septa that are thicker than normal prespore septa and apparently contain too much cell wall material to allow further membrane development into forespores or spores. l-Malate prevents accumulation of glycerophosphate and restores sporulation of the mutant. Glucose or gluconate cannot resotre sporulation, because they still effect glycerophosphate accumulation via de novo synthesis. If that accumulation is blocked in a double mutant, which is unable to make glycerophosphate from or to metabolize it into Embden-Meyerhof compounds, then nonsuppressing amounts of glucose or gluconate can restore sporulation.  相似文献   

3.
At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel development when the single mutants 527 and 29 are combined with the mutant 1508. At maturity, kernels of the double mutants 527/1508 and 29/1508 contained, respectively, 68 and 43% less starch than Bomi. The double mutant 29/1508 kernel had a slightly lower prolamin content than mutant 1508 which is the most prolamin-deficient single mutant. In the double mutant 527/1508, however, an almost complete suppression of prolamin synthesis was observed during kernel development. The percentage of lysine in the seed proteins of the double mutants was about the same as in the most extreme single mutant 1508. Based on the additive effect of the individual high-lysine genes in the double mutants, it is concluded that the influences of these genes on prolamin and starch synthesis are independent.  相似文献   

4.
Two single mutants and the corresponding double mutant of beta-lactamase I from Bacillus cereus 569/H were constructed and their kinetics investigated. The mutants have Lys-73 replaced by arginine (K73R), or Glu-166 replaced by aspartic acid (E166D), or both (K73R + E166D). All four rate constants in the acyl-enzyme mechanism were determined for the E166D mutant by the methods described by Christensen, Martin & Waley [(1990) Biochem. J. 266, 853-861]. Both the rate constants for acylation and deacylation for the hydrolysis of benzylpenicillin were decreased about 2000-fold in this mutant. In the K73R mutant, and in the double mutant, the rate constants for acylation were decreased about 100-fold and 10,000-fold respectively. All three mutants also had lowered values for the rate constants for the formation and dissociation of the non-covalent enzyme-substrate complex. The specificities of the mutants did not differ greatly from those of wild-type beta-lactamase, but the hydrolysis of cephalosporin C by the K73R mutant gave 'burst' kinetics.  相似文献   

5.
6.
Bacillus subtilis cwlD and dacB mutants produce spore peptidoglycan (PG) with increased cross-linking but with little change in spore core hydration compared to the wild type. A cwlD dacB double mutant produced spores with a two- to fourfold greater increase in PG cross-linking and novel muropeptides containing glycine residues but no significant changes in spore resistance or core hydration.  相似文献   

7.
Mutants deficient in the production of bacteriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus. Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions.  相似文献   

8.
Endonuclease II-deficient, ligase-deficient double mutants of phage T4 induce considerably more deoxyribonucleic acid (DNA) synthesis after infection of Escherichia coli B than does the ligase-deficient single mutant. Furthermore, the double mutant can replicate 10 to 15% as well as wild-type T4, whereas the single mutant fails to replicate. When the E. coli host is also deficient in ligase, the double mutant resembles the single mutant. The results indicate that host ligase can substitute for phage ligase when the host DNA is not attacked by the phage-induced endonuclease II.  相似文献   

9.
The rapid lysis of Bacillus licheniformis NCTC 6346 and B. subtilis 168 trp caused by vancomycin and d-cycloserine can be inhibited by stopping protein synthesis. Protein synthesis must be stopped for more than one doubling time of the cells before addition of wall inhibitors. Poorly lytic mutants (lyt(-)) of B. licheniformis required 10 to 20 times the concentration of vancomycin or cycloserine to be added to growing cultures to cause even slow lysis. At lower concentrations growth of the mutants is stopped, but the bacteria remain fully viable. Sensitivity of mucopeptide synthesis to vancomycin is the same in both mutants and parent. Sensitivity to the action of d-cycloserine is slightly less in the mutant than in the parent.  相似文献   

10.
The ATP synthase of the alkaliphile Bacillus pseudofirmus OF4 has a tridecameric c-subunit rotor ring. Each c-subunit has an AxAxAxA motif near the center of the inner helix, where neutralophilic bacteria generally have a GxGxGxG motif. Here, we studied the impact of four single and six multiple Ala-to-Gly chromosomal mutations in the A16xAxAxA22 motif on the capacity for nonfermentative growth and, for most of the mutants, on ATP synthesis by ADP- and P(i)-loaded membrane vesicles at pH 7.5 and 10.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of the holo-ATP synthases were used to probe stability of the mutant c-rotors and mobility properties of the c-rotors as well as the monomeric c-subunits that are released from them by trichloroacetic acid treatment. Mutants containing an Ala16-to-Gly mutation exhibited the most severe functional defects. Via SDS-PAGE, most of the mutant c-monomers exhibited increased mobility relative to the wild-type (WT) c-subunit, but among the intact c-rings, only Ala16-to-Gly mutants exhibited significantly increased mobility relative to that of the WT c-ring. The hypothesis that these c-rings have a decreased c-subunit stoichiometry is still untested, but the functional impact of an Ala16-to-Gly mutation clearly depended upon additional Ala-to-Gly mutation(s) and their positions. The A16/20G double mutant exhibited a larger functional deficit than both the A16G and A16/18G mutants. Most of the mutant c-rings showed in vitro instability relative to that of the WT c-ring. However, the functional deficits of mutants did not correlate well with the extent of c-ring stability loss, so this property is unlikely to be a major factor in vivo.  相似文献   

11.
Like other bacteria, Bacillus subtilis possesses a family of homologous small acidic proteins (CspB, CspC and CspD, identity > 70%) that are strongly induced in response to cold shock. We show that deletion of cspC or cspD genes did not result in a detectable phenotype; in contrast, csp double mutants exhibited severe reduction in cellular growth at 15°C as well as at 37°C, including impairment of survival during the stationary phase. Two-dimensional gel analysis showed that protein synthesis was deregulated in csp double mutants and that the loss of one or two CSPs led to an increase in the synthesis of the remaining CSP(s) at 37°C and after cold shock, suggesting that CSPs down-regulate production of members from this protein family. A cspB/C/D triple mutant (64BCDbt) could only be generated in the presence of cspB in trans on a plasmid that was not lost, in spite of lack of antibiotic pressure, indicating that a minimum of one csp gene is essential for viability of B . subtilis . After cold shock, synthesis of CspB in 64BCDbt was drastically lower than in wild-type cells accompanied by cessation in growth and strong reduction in general protein synthesis. As CspB, CspC and CspD are shown to bind to RNA in a co-operative and interactive manner, CSPs are suggested to function as RNA chaperones facilitating the initiation of translation under optimal and low temperatures.  相似文献   

12.
Bacillus subtilis mutants with temperature-sensitive growth on complex media were screened for defects in phospholipid metabolism. One mutant was isolated that showed temperature-sensitive net synthesis of phosphatidylethanolamine. The mutant did not accumulate phosphatidylserine at the nonpermissive temperature. In the presence of hydroxylamine, wild-type B. subtilis accumulated phosphatidylserine at both 32 and 45 degrees C, whereas the mutant did only at 32 degrees C. In vitro phosphatidylethanolamine synthesis with bacterial membranes is no more temperature sensitive with mutant membranes than with wild-type membranes. The mutation probably affects the synthesis indirectly, possibly by altering a membrane protein. The mutant bacteria grew at the nonpermissive temperature, 45 degrees C, in a phosphate buffer-based minimal medium, although net synthesis of phosphatidylethanolamine was also temperature sensitive in this medium. One mutation caused both temperature-sensitive growth on complex media and temperature-sensitive net synthesis of phosphatidylethanolamine. The mutation is linked to aroD by transformation.  相似文献   

13.
Several mutants of Bacillus subtilis were isolated which sporulate continually during exponential growth in glucose medium. The spdA1 mutation, responsible for the continual sporulation of one of the mutants, mapped near thr. When an exponentially growing culture of a strain containing spdA1 was maintained at essentially constant turbidity, 5% of the viable cells contained heat-resistant spores. The continual sporulation depended on the stringent response since it was absent in spdA relA double mutants. Genetic and biochemical analysis indicated that the continual sporulation of spdA1 strains was associated with a lower specific activity of pyruvate carboxylase, which limited the rate of oxaloacetate synthesis from glucose via pyruvate and thereby the supply of compounds depending on the citrate cycle, especially aspartate. Therefore, the mild stringent response caused by the spdA1 mutation seems to result from a partial deficiency of aspartyl-tRNA which may exert its sporulation-initiating effect during a limited time interval in each growth cycle. A mutant blocked in fumarase activity (citG) behaved similarly. It grew only slowly in glucose medium because much of the limiting oxaloacetate was wasted for the excretion of fumarate. The mutant produced little aspartate and sporulated at a high frequency in glucose medium, even in the presence of glutamate; the sporulation was again prevented by aspartate or malate or by introduction of the relA marker into the strain.  相似文献   

14.
1. Previous studies of penicillinase synthesis in Bacillus licheniformis showed that enzyme synthesis after the addition of actinomycin continues for far longer in the constitutive mutant 749/C than in the parental inducible strain (Yudkin, 1966). This result was interpreted as indicating a difference in the lifetime of specific messenger RNA in the two strains. Other bacilli have now been examined in an attempt to see whether this difference is general. 2. There was no difference in the lifetime of messenger RNA for penicillinase synthesis between an inducible and a constitutive strain of Bacillus cereus. 3. Three freshly isolated constitutive mutants of B. licheniformis also had short-lived messenger RNA, like their inducible parent. 4. A reinvestigation of mutant 749/C confirmed the original finding that, on treatment with actinomycin, it continued to synthesize penicillinase far longer than did its parent. 5. An inducible revertant of mutant 749/C was indistinguishable from the original inducible strain, and appeared to have lost both constitutivity and long-lived messenger RNA in the back mutation.  相似文献   

15.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

16.
17.
To determine the regulation of morphogenesis of the outermost layer, the thick layer outside the inner coat, of the Bacillus megaterium spore, we isolated 15 outermost layer deficient mutants of B. megaterium using transposon Tn917. Three mutant strains lacked both synthesis of the 48-kDa outermost layer protein and induction of two initial enzymes for galactosamine-6-phosphate polymer synthesis, evidence that these biochemical events are regulated in the cascade system during morphogenesis of the outermost layer.  相似文献   

18.
The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acids play important role in substrate binding at subsites at −3 through −5. Although mutation increases the transglycosylation activity of enzymes, in the presence of acceptors the difference between wild type and mutants is not so significant. Oligomer transfer reactions of AMY1 wild type and its mutants were studied using maltoheptaose and maltopentaose donors and different chromophore containing acceptors. The conditions for the chemoenzymatic synthesis of 4-methylumbelliferyl-α-d-maltooligosaccharides (MU-α-d-MOSs) were optimized using 4-methylumbelliferyl-β-d-glucoside as acceptor and maltoheptaose as donor. 4-Methylumbelliferyl-α-d-maltoside, -maltotrioside, -maltotetraoside and -maltopentaoside have been synthesized. Products were identified by MALDI-TOF MS. 1H and 13C NMR analyses showed that AMY1 V47F preserved the stereo- and regioselectivity. The produced MU-α-d-MOSs of degree of polymerization DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay.  相似文献   

19.
A strain of Escherichia coli carrying the rne-3071 mutation that affects the RNA processing enzyme ribonuclease E, was mutagenized, and double mutants deficient in RNA processing were isolated. The isolation was based on the appearance of a particular RNA precursor molecule upon infection of an rne mutant with a specific bacteriophage T4 deletion strain. From one of the double mutants the rne mutation was removed, and the new single mutant, designated rng, was examined. In this mutant the maturation of host RNA as well as of bacteriophage T4 RNA is affected. The effect of the rng mutation on RNA synthesis is unique and can be distinguished from the effects of the other established mutations in RNA processing. The effects of the rng mutation can be recognized in vivo and in vitro.  相似文献   

20.
Spores of Bacillus anthracis, the etiological agent of anthrax, and the closely related species Bacillus cereus and Bacillus thuringiensis, possess an exosporium, which is the outermost structure surrounding the mature spore. It consists of a paracrystalline basal layer and a hair-like outer layer. To date, the structural contribution of only one exosporium component, the collagen-like glycoprotein BclA, has been described. It is the structural component of the hair-like filaments. Here, we describe two other proteins, ExsFA and ExsFB, which are probably organized in multimeric complexes with other exosporium components, including BclA. Single and double exsF deletion mutants were constructed and analyzed. We found that inactivation of exsF genes affects the BclA content of spores. BclA is produced by all mutants. However, it is partially and totally released after mother cell lysis of the DeltaexsFA and DeltaexsFA DeltaexsFB mutant strains, respectively. Electron microscopy revealed that the exsF mutant spores have defective exosporia. The DeltaexsFA and DeltaexsFA DeltaexsFB spore surfaces are partially and totally devoid of filaments, respectively. Moreover, for all mutants, the crystalline basal layer appeared unstable. This instability revealed the presence of two distinct crystalline arrays that are sloughed off from the spore surface. These results indicate that ExsF proteins are required for the proper localization of BclA on the spore surface and for the stability of the exosporium crystalline layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号