首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
灵芝漆酶催化直接耐晒翠蓝GL脱色条件的优化   总被引:2,自引:0,他引:2  
采用灵芝菌株发酵所得的漆酶, 对酞菁类染料直接耐晒翠蓝GL进行了催化脱色实验, 确定了脱色反应的最适条件。结果表明: 单独使用灵芝漆酶粗酶液对直接耐晒翠蓝GL具有很好的脱色效果。其最适脱色pH为3.0, 最适脱色温度为40°C, 最适漆酶用量是40 U/mL, 最适染料浓度为60 mg/L。以上述最适脱色条件对直接耐晒翠蓝GL进行脱色实验, 反应70 min, 脱色率可达94.3%。研究结果显示, 所试灵芝漆酶在印染废水治理方面具有良好的应用前景。  相似文献   

2.
模拟精炼糖厂废水云芝脱色及对多糖含量影响*   总被引:2,自引:0,他引:2  
比较了4株不同云芝PVC0、PVCl、PVC2、PVC3对模拟糖厂废水的总脱色能力及对美拉德反应色素、碱降解色素及焦糖色素的降解能力;比较了添加色素培养对不同云芝菌株生物量及菌丝体多糖(PSK)产量的影响。结果表明,PvCO对模拟废水的脱色率最高,其在废水中培养的菌丝体眺含量虽然较PVC1稍低,但其生物量最大,PSK产量仍然最大。以PVCO为当选菌株进行实验,研究表明浓度75%实际废水的PVCO脱色率为53%,低于对模拟废水的脱色率71%,但两培养的PvCO生物量与PSK产量相当。  相似文献   

3.
Continuous decolorization of molasses waste water by mycelia of Coriolus versicolor Ps4a was studied using waste water from a baker’s yeast factory, treated by means of methane fermentation and with activated sludge. Optimum decolorization with bare pellet-type mycelia in shaking flasks needed the addition of glucose (0.5%) and peptone (0.05%) and aerobic conditions (1ppm of dissolved oxygen). Continuous decolorization in a bubbling column reactor showed a decolorization yield of approximately 75% in only 20 hr at a dilution rate (D) of 0.03 hr?1 under the optimum conditions.

In order to continue the decolorization for a longer time, mycelia immobilized within Caalginate gel were tested in a bubbling column reactor under the optimum conditions. The immobilized mycelia showed an almost constant decolorization yield (65.7%) during continuous decolorization for 16 days at D = 0.22 hr?1.  相似文献   

4.
Effect of various parameters such as size of inoculum, temperature, carbon source on decolorization of textile wastewater by Phanerochaete chrysosporium was investigated. Textile wastewater decolorization occurred during the primary phase of growth and secondary metabolism in carbon and nitrogen limited medium, respectively. It was found that glucose concentration up to 0.3 g/l has considerable effect on decolorisation rate. Further, it was also found that the concentration of the organic nitrogen of the effluent stream was sufficient to furnish the decolorisation process. It was observed that the inoculum size in this case within 10% increased the decolorisation rate rapidly. It was found that the temperature rise from 20 to 38 °C enhanced the rate of decolorization. The optimum temperature for decolorisation was found to be about 35 °C. Effect of pH from 2-4 on decolorization was also investigated. It is concluded that using Phanerochaete chrysosporium, decolorization of the azo dye containing effluent of the textile industry was achieved to about 96% within 28 h of operation.  相似文献   

5.
Lactobacillus plantarum No. PV71-1861, isolated from pickle samples in Thailand, showed the high potential for use in decolorization of molasses wastewater under both anaerobic and facultative (static) conditions. The strain showed the highest melanoidin pigment (MP) decolorization yield of 68.12% with MP solution (color intensity corresponding to an optical density of 3.5 units at 475 nm) containing 2% glucose, 0.4% yeast extract, 0.1% KH(2)PO(4), 0.05% MgSO(4).7H(2)O and initial pH of 6 under static condition at 30 degrees C within 7 days. But, it showed low growth and MP decolorization yields under aerobic conditions. Gel filtration chromatograms of the MP solutions showed that the small molecular weight fraction of MP solution was decolorized by the strain when the large molecular weight fraction still remained in the effluent. For application, the strain could apply to treat anaerobic treated-molasses wastewater (T-MWW) with high removal efficiency. The highest MP removal efficiencies and growth yield of 76.6% and 2.6 mg/mL, respectively, were observed with the T-MWW within 7 days of culture, and the effluent pH of the system was decreased to lower than 4.0 after 2-3 days operation.  相似文献   

6.
采用离子交换法,利用弱碱性阴离子交换树脂D315吸附小麦粉初提液中的α-淀粉酶抑制剂,对其静态吸附以及洗杂洗脱条件进行研究。通过对静态吸附条件的摸索,得出静态下的最佳工艺条件:上样料液的蛋白质量浓度ρ0=2.5~3.5 mg/mL、pH=8.5~9.5、温度t=30℃、转速150 r/min。最佳洗脱条件:0.1 mol/L NaCl洗杂,0.5mol/L NaCl洗脱。在该条件下,α-淀粉酶抑制剂纯化倍数为4.25倍,收率为64.58%。  相似文献   

7.
A Pseudomonas luteola strain possessing azoreductase activity was utilized to decolorize a reactive azo dye (C. I. Reactive Red 22) with fed-batch processes consisting of an aerobic cell growth stage and an anaerobic fed-batch decolorization stage. The fed-batch decolorization was conducted with different agitation and aeration rates, initial culture volumes, dye loading strategies, and yeast extract to dye (Y/D) ratios, and the effect of those operation parameters on azo dye decolorization was evaluated. Dissolved oxygen strongly inhibited the azo reduction activity; thus aeration should be avoided during decolorization but slight agitation (around 50 rpm) was needed. With the periodical feeding strategy, the specific decolorization rate (v(dye)) and overall decolorization efficiency (eta(dye)) tended to increase with increasing feeding concentrations of dye, whereas substrate inhibition seems to arise when the feeding concentration exceeded 600 mg dye/L. In the continuous feeding mode, higher initial culture volume resulted in better eta(dye) due to higher biomass loading, but lower v(dye) due to lower dye concentration in the bioreactor. With a volumetric flow rate (F) of 25 mL/h, both v(dye) and eta(dye) increased almost linearly with the increase in the loading rate of dye (F(dye)) over the range of 50-200 mg/h, while further increase in F(dye) (400 mg/h) gave rise to a decline in v(dye) and eta(dye). As the F was doubled (50 mL/h), the v(dye) and eta(dye) increased with F(dye) only for F(dye) < 80 mg/h. The best v(dye) (113.7 mg dye g cell(-)(1) h(-)(1)) and eta(dye) (86.3 mg dye L(-)(1) h(-)(1)) were achieved at F(dye) = 200 mg/h and F = 25 mL/h. The yield coefficient representing the relation between dye decolorized and yeast extract consumed was estimated as 0.8 g/g. With F(dye) = 75 mg/h, the Y/D ratio should be higher than 0.5 to ensure sufficient supply of yeast extract for stable fed-batch operations. However, performance of the fed-batch decolorization process was not appreciably improved by raising the Y/D ratio from 0.5 to 1.875 but was more sensitive to the changes in the dye loading rate.  相似文献   

8.
Pressurized low polarity water (PLPW) fractionation of triticale straw was optimized to maximize hemicellulose and lignin yield, and to produce a cellulose rich fraction for biofuels production. The optimum PLPW conditions for hemicellulose yield was determined to be 165 °C, with a flow rate of 115 mL/min, and a solvent-to-solid ratio of 60 mL/g. Hemicellulose and lignin yield generally increased with increasing temperature and solvent-to-solid ratio. There was a small decrease in hemicellulose yield with an increase in flow rate. Minimum lignin content of the triticale straw residue after extraction was predicted to occur at a processing condition of 206 °C, 160 mL/min, and 67 mL/g. PLPW was successful in removing 73-78% of the hemicellulose, leaving a cellulose rich fraction (65% glucose concentration). Lignin was equally distributed between the solid residues and the extracts and most of the hemicellulose was extracted in oligomer form. Remaining solid residues after fractionation were highly digestible by cellulase enzymes.  相似文献   

9.
Textile industry discharges a vast amount of unused synthetic dyes in effluents. The discharge of these effluents into rivers and lakes leads to a reduction in sunlight penetration in natural water bodies, which, in turn, decreases both photosynthetic activity and dissolved oxygen concentration rendering it toxic to living beings. This paper describes the decolorization potential of a local white rot fungus, Coriolus versicolor IBL-04 for practical industrial effluents collected from five different textile industries of Faisalabad, Pakistan. Screening of C. versicolor IBL-04 on five effluents showed best decolorization results (36.3%) for Arzoo Textile Industry (ART) effluent in 6 days followed by Crescent Textile Industry (CRT), Itmad Textile Industry (ITT), Megna Textile Industry (MGT) and Ayesha Textile Industry (AST) effluents. Optimization of different process parameters for ART effluent decolorization by C. versicolor IBL-04 showed that manganese peroxidase (MnP) (486 U/mL) was the lignolytic enzyme present in the culture filtrates with undetectable lignin peroxidase (LiP) and laccase. The MnP synthesis and effluent decolorization could be enhanced to 725 U/mL and 84.4%, respectively, with a significant time reduction to 3 days by optimizing pH and temperature and using 1% starch as a supplementary carbon source.  相似文献   

10.
Anaerobic acclimatization of activated sludge from a textile effluent treatment plant to high concentration of RB5 could effectively decolorize RB5 dye solution. The strains viz. Pseudomonas aeruginosa and Bacillus circulans and other unidentified laboratory isolates (NAD1 and NAD6) were predominantly present in the microbial consortium. The conditions for efficient decolorization, biostimulation to increase effectiveness of microbial consortium, its tolerance to high salt concentration and non-specific ability towards decolorization of eight azo dyes, are reported. The optimum inoculums concentration for maximum decolorization were found to be 1-5 ml of 1800+/-50 mg l(-1) MLSS and 37 degrees C, respectively. The decolorization efficiency was 70-90% during 48 h. The biomass showed efficient decolorization even in the presence of 10% NaCl, as tested with RB5. In the presence of flavin adenine dinucleotide (FAD) more than 99% decolorization occurred in 8h. The decolorization of RB5 was traced to extracellular enzymes. The effectiveness of acclimatized biomass under optimized conditions towards decolorization of two types of synthetic dye bath wastewaters that were prepared using chosen azo dyes is reported.  相似文献   

11.
The aim of the present study was to investigate the textile effluent degrading potential of an isolated bacterium, Proteus sp. SUK7. The strain had the capacity to decolorize Navy Blue Rx–containing textile effluent up to 83% within 96 h. The maximum decolorization was observed under static conditions at pH 7.0 and 30°C. Reduction in the chemical oxygen demand (COD) and biological oxygen demand (BOD) of textile effluent was observed after treatment with Proteus sp. SUK7. Induction in the activities of laccase and aminopyrine N-demethylase was observed after decolorization, which indicates involvement of these enzymes in the decolorization process. The presence of various inducers was also found to have a modulatory effect on enzyme activities and the decolorization process. Biodegradation was confirmed using various analytical techniques, such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), gas chromatography–mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). A phytotoxicity study was performed to confirm the nontoxic nature of the degradation metabolites.  相似文献   

12.
为获得大孔树脂纯化岩高兰多酚的最佳工艺,以岩高兰的地上部分为原料,通过考察6种不同类型树脂(HPD-100、X-5、AB-8、D101、HPD-600、NKA-II)的含水率、吸附率和解吸率的大小,筛选出一种最适合纯化岩高兰多酚的树脂。在此基础上,选择对纯化工艺影响较大的4种因素(上样浓度、乙醇浓度、洗脱流速、洗脱体积),进行响应面法分析得到最佳工艺。结果表明:HPD-600型大孔树脂对岩高兰多酚的纯化效果最佳,其最优工艺参数为:上样浓度0.84 mg·mL-1;乙醇浓度62.15%;洗脱流速0.67 mL·min-1;洗脱体积2.71 BV。该条件下,岩高兰多酚的提取率为229.18 mg·g-1,岩高兰多酚的纯度由8.11%提高到22.56%,回收率为67.78%。本研究为岩高兰多酚的纯化工艺提供了新的技术路线,也可为岩高兰提取物的研究和应用提供参考。  相似文献   

13.
研究比较了5种树脂对肝素的吸附能力,从中选出S5428阴离子交换树脂来纯化肝素。通过对各因素的研究,确定了树脂对肝素的静态、动态吸附以及解吸的最佳条件。结果表明:静态吸附的温度45℃,pH 8.0的条件下吸附2 h,肝素的吸附率为90.5%;层析柱的动态吸附温度45℃,肝素溶液进样浓度1.0 mg/mL,进样速度1.5 mL/min,树脂柱能处理1.5 BV肝素液而不发生泄露,吸附量为3.05 mg/mL,达到饱和吸附时可处理4BV的料液,吸附量为9.18 mg/mL;采用2.0 mol/L NaCl洗脱,洗脱流速1.5 mL/min,肝素解吸率可达95.8%,肝素效价可达150 U/mg,效价回收率98%。  相似文献   

14.
利用果胶酶协同超声波法,对沙棘果渣有效成分总黄酮的提取工艺及其抗氧化活性进行了研究.以提取率为指标,通过酶用量、液料比、乙醇浓度、提取时间、提取温度、超声功率等单因素分析,选定酶用量、液料比、超声提取时间3个因素进行响应面试验,确定提取优化工艺条件为:果胶酶用量5.1%,液料比41∶1,超声提取时间81 min,此条件...  相似文献   

15.
Aerobic mixed bacterial culture comprised of five isolates (Bacillus vallismortis, B. pumilus, B. cereus, B. subtilis and B. megaterium) identified by 16srDNA analysis was developed from wastewater samples from the aeration tank of an effluent treatment plant of a textile and dyeing industry and evaluated for its ability to decolorize azo dye Direct Red 28 in an up-flow immobilized packed bed bioreactor using marble chips as support matrix. The bioreactor was operated under two parameters: an aeration rate of 0.4 and 0.6 mmol/min at a flow rate of 60, 90 and 120 ml/h, respectively. At a constant aeration rate of 0.4 mmol/min and with flow rates of 60, 90 and 120 ml/h, optimum decolorization of 91, 75 and 72% was observed, while at an aeration rate of 0.6 mmol/min and flow rates of 60, 90 and 120 ml/h, optimum decolorization of 93, 78 and 72% was observed over 10 days. The study concluded that across the two aeration rates and the respective flow rates, the higher aeration rate of 0.6 mmol/min along with a flow rate of 60 ml/h was best suited to decolorize Direct Red 28 in the packed bed bioreactor. Spectral changes of the input and output of the bioreactor by UV–visible spectroscopy indicated decolorization of the dye solution by degradation in addition to the visual observation of the biosorption process.  相似文献   

16.
采用大孔吸附树脂层析结合硅胶柱层析,对环孢菌素A的分离纯化进行研究,确定了最佳层析条件,建立了工业化制备环孢菌素A的工艺。大孔吸附树脂层析选用D101树脂作为吸附介质,提取液丙酮含量控制在50%,最大吸附量为35 mg/g湿树脂,洗脱剂选用丙酮;硅胶柱层析选用42~64μm硅胶作为层析介质,最优层析条件为柱床高径比10∶1,流动相配比V(石油醚)∶V(丙酮)=70∶30,流速80 mL/m in,环孢菌素A上样质量浓度100 g/L,硅胶层析平均收率为84.2%,环孢菌素A纯度可达到97%以上,整个工艺总收率为65%~70%。  相似文献   

17.
塔拉多糖是一种半乳甘露聚糖胶,对于我们具有非常重要的应用价值。本实验主要对塔拉提取物中的塔拉多糖进行脱色工艺化研究;在单因素实验的基础上,对活性炭颗粒质量、脱色时间、脱色温度以及脱色次数这四种因素进行正交优化实验,其最佳脱色实验参数为:活性炭颗粒0.6 g,脱色45 min,脱色温度45℃脱色次数3次,脱色率可以达到50.21%,同时多糖类保留率为90.39%。  相似文献   

18.
A rapid method for the determination of para-phenylenediamine (PPD) in cosmetic products, such as henna tattoos has been developed and evaluated. This analytical procedure involved extracting a 10mg test portion of cosmetic product in 10 mL of ethyl acetate, followed by determination by gas chromatography-mass spectrometry in the selected ion monitoring mode (GC/MS-SIM). 1,4-Phenylenediamine-2,3,5,6-d(4) was selected as an internal standard that was added at the beginning of the extraction procedure and used to correct for recovery and matrix effects. The linearity ranged from 1.0 to 1275 μg/mL with a coefficient of determination (r(2)) greater than 0.999. LOQ and LOD were 1.0 and 0.10 μg/mL, respectively. The recovery in a tattoo product containing PPD was 94% and that for a tattoo product containing no PPD reached 105%. Extraction efficiency of 98% was obtained. This method has been successfully applied to henna temporary tattoo and other henna-related cosmetic products for the determination and quantitation of PPD.  相似文献   

19.
A bacterial strain AAP56, isolated from a polluted soil (from Kelibia city) and identified as Stentrophomonas maltophilia, was particularly interesting for its ability to decolorize recalcitrant dyes of an industrial effluent: SITEX Black. The final percentage decolorization 60% was shown by bacterial culture after incubation in LB medium at 30°C under shaking conditions. The decolorization was closely correlated with the metabolic bacterial growth. The replacement of yeast extract in LB medium composition by soya flour was clearly efficient to enhance the percentage decolorization by 20% and also to reduce the growth medium cost 60-fold. The bacteria were able to reduce 23% from the initial COD and 28% from the initial BOD5 of the effluent. The immobilization of bacterial cells in calcium alginate beads improved by 25% the effectiveness of the biotransformation within 24 h in batch conditions. The potential of a downflow fixed column reactor (DFCR) to decolorize SITEX Black was evaluated under dilution rate. The best decolorization percentage (82%) was recorded at 0.3 h−1. This bioprocess seems to be a potentially useful method to remediate the colored textile wastewater.  相似文献   

20.
于存  罗佳欣 《菌物学报》2018,37(3):379-388
利用海藻酸钙法对乳白耙齿菌进行固定化,检测固定化乳白耙齿菌(固定化菌)对几种染料的脱色能力。同时,考察pH值、染料浓度、金属离子、碳源种类、氮源种类、盐浓度对固定化菌脱色茜素红的影响。结果表明,固定化菌的优化条件为海藻酸钠3%、氯化钙5%、固定化时间6h、接菌量10g/100mL;固定化菌对6种染料均可脱色,其中对茜素红染料的脱色效果最为明显;固定化菌对茜素红的脱色率随染料浓度的增加而下降,当染料浓度高于250mg/L时,其脱色效果明显下降;固定化菌对茜素红脱色的适宜pH为7,适宜碳源为可溶性淀粉、适宜氮源为硝酸铵。另外,固定化菌对茜素红的脱色率随盐浓度的升高,呈下降趋势,当盐浓度高于3%时,脱色率下降明显;固定化菌于生理盐水中保存10d后,脱色率维持在较高水平,达94.20%;固定化菌重复利用5次后,脱色率仍高达88.70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号