首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TNF receptor subtype signalling: differences and cellular consequences   总被引:20,自引:0,他引:20  
  相似文献   

2.
Tumor necrosis factor alpha (TNF-alpha) is an inflammatory cytokine that has been implicated in a variety of rheumatic and inflammatory diseases. New understanding of the importance of TNF-alpha in the pathophysiology of rheumatoid arthritis and Crohn's disease led to the development of a new class of targeted anti-TNF therapies. Anti-TNF-alpha agents including etanercept (a fusion protein of the p75 TNF receptor and IgG1) and infliximab (a chimeric monoclonal antibody specific for TNF-alpha) have been approved for the treatment of rheumatoid arthritis. In addition, infliximab has been approved in the treatment of patients with active or fistulating Crohn's disease. A new appreciation of the importance of TNF-alpha in other rheumatic and inflammatory diseases has led to a broadening of the application of anti-TNF agents. Both etanercept and infliximab have been used in open-label and randomized studies in patients with psoriatic arthritis. Although larger randomized trials are needed to confirm early results, both these anti-TNF-alpha agents, etanercept and infliximab, have demonstrated activity in improving the signs and symptoms of psoriatic arthritis and psoriasis. Infliximab has also been shown to be effective in patients with other rheumatic diseases, including ankylosing spondylitis, and may be effective in adult-onset Still's disease, polymyositis, and Beh?et's disease. Further investigations will fully elucidate the role of infliximab in these and other rheumatic diseases.  相似文献   

3.
Chen X  Oppenheim JJ 《FEBS letters》2011,585(23):3611-3618
Anti-TNF treatment is effective in a majority of rheumatoid arthritis (RA), however, this treatment can unexpectedly trigger the onset or exacerbate multiple sclerosis (MS). Recent progress in cellular immunology research provides a new framework to analyze the possible mechanism underlying these puzzling contradictory effects. The delicate balance of protective CD4(+)FoxP3(+) regulatory T cells (Tregs) and pathogenic CD4(+)FoxP3(-) effector T cells (Teffs) is crucial for the outcome of anti-TNF treatment of autoimmune disease. There is convincing evidence that TNF, in addition to stimulating Teffs, is able to activate and expand Tregs through TNFR2, which is preferentially expressed by Tregs. Therefore, the contrasting effects of TNF on Tregs and Teffs are likely to determine the therapeutic effect of anti-TNF treatment. In this review, we discuss the current understanding of the general effect of TNF on the activation of T cells, and the impact of TNF on the function of Teffs and Tregs. Understanding the differential effects of TNF on Teffs and Tregs is fundamentally required for the design of more effective and safer anti-TNF or anti-TNF receptor(s) therapeutic strategy for autoimmune diseases.  相似文献   

4.
Molecular mechanism of TNF signaling and beyond   总被引:17,自引:0,他引:17  
Liu ZG 《Cell research》2005,15(1):24-27
  相似文献   

5.
The immune response to Mycobacterium tuberculosis (Mtb) infection is complex. Experimental evidence has revealed that tumor necrosis factor (TNF) plays a major role in host defense against Mtb in both active and latent phases of infection. TNF-neutralizing drugs used to treat inflammatory disorders have been reported to increase the risk of tuberculosis (TB), in accordance with animal studies. The present study takes a computational approach toward characterizing the role of TNF in protection against the tubercle bacillus in both active and latent infection. We extend our previous mathematical models to investigate the roles and production of soluble (sTNF) and transmembrane TNF (tmTNF). We analyze effects of anti-TNF therapy in virtual clinical trials (VCTs) by simulating two of the most commonly used therapies, anti-TNF antibody and TNF receptor fusion, predicting mechanisms that explain observed differences in TB reactivation rates. The major findings from this study are that bioavailability of TNF following anti-TNF therapy is the primary factor for causing reactivation of latent infection and that sTNF—even at very low levels—is essential for control of infection. Using a mathematical model, it is possible to distinguish mechanisms of action of the anti-TNF treatments and gain insights into the role of TNF in TB control and pathology. Our study suggests that a TNF-modulating agent could be developed that could balance the requirement for reduction of inflammation with the necessity to maintain resistance to infection and microbial diseases. Alternatively, the dose and timing of anti-TNF therapy could be modified. Anti-TNF therapy will likely lead to numerous incidents of primary TB if used in areas where exposure is likely.  相似文献   

6.
GnRHs and GnRH receptors   总被引:7,自引:0,他引:7  
GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.  相似文献   

7.
Increased rates of tuberculosis (TB) reactivation have been reported in humans treated with TNF-α (TNF)-neutralizing drugs, and higher rates are observed with anti-TNF Abs (e.g., infliximab) as compared with TNF receptor fusion protein (etanercept). Mechanisms driving differential reactivation rates and differences in drug action are not known. We use a computational model of a TB granuloma formation that includes TNF/TNF receptor dynamics to elucidate these mechanisms. Our analyses yield three important insights. First, drug binding to membrane-bound TNF critically impairs granuloma function. Second, a higher risk of reactivation induced from Ab-type treatments is primarily due to differences in TNF/drug binding kinetics and permeability. Apoptotic and cytolytic activities of Abs and pharmacokinetic fluctuations in blood concentration of drug are not essential to inducing TB reactivation. Third, we predict specific host factors that, if augmented, would improve granuloma function during anti-TNF therapy. Our findings have implications for the development of safer anti-TNF drugs to treat inflammatory diseases.  相似文献   

8.
The efficacy of B-cell depletion therapy in rheumatoid arthritis (RA) has led to a renewed interest in B cells and their products and the role they play in the pathogenesis of the disease. Agents blocking tumour necrosis factor (TNF) are also very effective in the treatment of RA. It has long been known that the use of anti-TNF therapy can be associated with development of anti-nuclear and anti-double-stranded DNA antibodies and, more rarely, a lupus-like syndrome. Recently, studies have been published investigating further possible effects of anti-TNF agents on B cells and whether these could contribute to their effectiveness in RA.  相似文献   

9.
TNF and TNFR biology in health and disease.   总被引:12,自引:0,他引:12  
Many insights have been gained into cytokine-regulated control of inflammatory processes and host defence in recent years. Evidence has also gradually accumulated that cytokine cascades play a central role in events regulating cell death and differentiation. Further developments include an understanding that the biological effects of the tumor necrosis factor-alpha (TNF-alpha or TNFSF) cytokine may be regulated by soluble TNF receptor binding and that modulation of receptor levels may permit physiological inhibition of TNF action. There has been a gradual realisation of the value of TNF/TNFR ratios as predictors of disease outcome, and the discovery of functional regulatory polymorphisms of the TNF gene and mutations of TNFRSF1A (TNFR1 receptor) have led to conceptual breakthroughs in our understanding of the genetic control of inflammation. However the exact mechanisms by which TNFRSF1A mutations give rise to disease susceptibility are not yet well understood. Over the past 10 years these concepts have been used as the basis for successful anti-TNF therapy of autoimmune diseases like rheumatoid arthritis (RA) and Crohn's disease.  相似文献   

10.
11.
Tumour necrosis factor (TNF) exerts two main effects: a beneficial one as an anti-infection, anti-tumour cytokine, and a detrimental one in the systemic inflammatory response syndrome (SIRS). Two receptors (TNF-R) mediate these effects, but their precise role in different cell types is far from solved. TNF induces receptor oligomerization, an event that is believed to connect the receptors to downstream signalling pathways. Recent research suggests that several TNF-R-associated proteins, including kinases, may initiate cytoplasmic signal transduction.  相似文献   

12.
13.
TNF is a Janus-faced protein. It possesses impressive anti-tumor activities, but it is also one of the strongest known pro-inflammatory cytokines, which hampers its use as a systemic anti-cancer agent. TNF has been shown to play a detrimental role in inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. Glucocorticoids are strongly anti-inflammatory and exert their therapeutic effects through binding to their receptor, the glucocorticoid receptor. Therefore, glucocorticoids have been used for over half a century for the treatment of inflammatory diseases. However, many patients are or become resistant to the therapeutic effects of glucocorticoids. Inflammatory cytokines have been suggested to play an important role in this steroid insensitivity or glucocorticoid resistance. This review aims to highlight the mechanisms of mutual inhibition between TNF and GR signaling pathways.  相似文献   

14.
GnRH acts on its cognate receptor in pituitary gonadotropes to regulate the biosynthesis and secretion of gonadotropins. It may also have direct extrapituitary actions, including inhibition of cell growth in reproductive malignancies, in which GnRH activation of the MAPK cascades is thought to play a pivotal role. In extrapituitary tissues, GnRH receptor signaling has been postulated to involve coupling of the receptor to different G proteins. We examined the ability of the GnRH receptor to couple directly to Galpha(q/11), Galpha(i/o), and Galpha(s), their roles in the activation of the MAPK cascades, and the subsequent cellular effects. We show that in Galpha(q/11)-negative cells stably expressing the GnRH receptor, GnRH did not induce activation of ERK, jun-N-terminal kinase, or P38 MAPK. In contrast to Galpha(i) or chimeric Galpha(qi5), transfection of Galpha(q) cDNA enabled GnRH to induce phosphorylation of ERK, jun-N-terminal kinase, and P38. Furthermore, no GnRH-mediated cAMP response or inhibition of isoproterenol-induced cAMP accumulation was observed. In another cellular background, [35S]GTPgammaS binding assays confirmed that the GnRH receptor was unable to directly couple to Galpha(i) but could directly interact with Galpha(q/11). Interestingly, GnRH stimulated a marked reduction in cell growth only in cells expressing Galpha(q), and this inhibition could be significantly rescued by blocking ERK activation. We therefore provide direct evidence, in multiple cellular backgrounds, that coupling of the GnRH receptor to Galpha(q/11), but not to Galpha(i/o) or Galpha(s), and consequent activation of ERK plays a crucial role in GnRH-mediated cell death.  相似文献   

15.
Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF – now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appear to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission.  相似文献   

16.
Whole bacteria or bacterial components or their extracts were employed to restore or augment the immune system. Beneficial effects were attained with these agents in treating various diseases. These agents were named biological response modifiers (BRMs) because they regulated certain cellular components of the immune system. The cellular regulation induced by these BRMs was found to be due to cytokines. The cytokines were shown to act directly on the various cellular components and to provide therapeutic benefit in various autoimmune and immune deficiency diseases. Overproduction of specific cytokines however leads to a deleterious effect on the host. Overproduction of tumour necrosis factor (endotoxin, lipopolysaccharide) leads to septic shock. Bacteraemia is the leading cause of overproduction of tumour necrosis factor (TNF). Septic shock in many cases leads to death. Several monoclonal antibodies to lipopolysaccharide (LPS) and anticytokines have demonstrated protection against septic shock.  相似文献   

17.

Background  

Nuclear receptors (NRs) and Receptor tyrosine kinases (RTKs) are essential proteins in many cellular processes and sequence variations in their genes have been reported to be involved in many diseases including cancer. Although crosstalk between RTK and NR signalling and their contribution to the development of endocrine regulated cancers have been areas of intense investigation, the direct coupling of their signalling pathways remains elusive. In our understanding of the role and function of nuclear receptors on the cell membrane the interactions between nuclear receptors and tyrosine kinase receptors deserve further attention.  相似文献   

18.
The TNF signaling pathway is a valuable target in the therapy of autoimmune diseases, and anti-TNF drugs are successfully used to treat diseases such as rheumatoid arthritis, Crohn's disease and psoriasis. By their ability to interfere with inflammatory processes at multiple levels, these TNF blockers have become invaluable tools to inhibit the inflammation induced damage and allow recovery of the affected tissues. Unfortunately this therapy has some drawbacks, including increased risk of infection and malignancy, and remarkably, the onset of new auto-immune diseases. Some of these effects are caused by the unwanted abrogation of beneficial TNF signaling. More specific targeting of the pathological TNF-induced signaling might lead to broader applicability and improved safety. Specificity might be increased by inhibiting the soluble TNF/TNFR1 axis while leaving the often beneficial transmembrane TNF/TNFR2 signaling untouched. This approach looks promising because it inhibits the pathological effects of TNF and reduces the side effects, and it opens the way for the treatment of other diseases in which TNFR2 inhibition is detrimental. In this review we give an overview of in vivo mouse studies of TNF mediated pathologies demonstrating that the blockade or genetic deletion of sTNF or TNFR1 is preferable over total TNF blockade.  相似文献   

19.
As indicated by its name, tumor necrosis factor (TNF), cloned in 1985, was originally described as a macrophage-derived endogenous mediator that can induce hemorrhagic necrosis of solid tumors and kill some tumor cell lines in vitro. Unfortunately, its promising use as an anticancer agent was biased by its toxicity, which was clear soon from the first clinical trials with TNF in cancer. Almost at the same time TNF was being developed as an anticancer drug, it became clear that TNF was identical to a mediator responsible for cachexia associated with sepsis, which was termed cachectin. This research led to the finding that TNF is, in fact, the main lethal mediator of sepsis and to the publication of a huge number of articles showing that TNF inhibits the toxic effects of bacterial endotoxins, which are now described as systemic inflammatory response. Although the clinical trials with anti-TNF in sepsis have not been successful thus far, undoubtedly as a result of the complexity of this clinical setting, these studies ultimately led to the identification of TNF as a key inflammatory mediator and to the development of anti-TNF molecules (soluble receptors and antibodies) for important diseases including rheumatoid arthritis and Crohn’s disease. On the other side, the mechanisms by which TNF and related molecules induce cell death have been studied in depth, and their knowledge might, in the future, suggest means of improve the therapeutic index of TNF in cancer.  相似文献   

20.
Angiopoietin-1 (Ang1) signals via the receptor tyrosine kinase Tie2 which exists in complex with the related protein Tie1 at the endothelial cell surface. Tie1 undergoes regulated ectodomain cleavage in response to phorbol esters, vascular endothelial growth factor (VEGF) and tumour necrosis factor-α (TNFα). Recently phorbol esters and VEGF were found also to stimulate ectodomain cleavage of Tie2. Here we investigate for the first time the effects of factors activating ectodomain cleavage on both Tie1 and Tie2 within the same population of cells, and their impact on angiopoietin signalling. We find that phorbol ester and VEGF activated Tie1 cleavage within minutes followed by restoration to control levels by 24 h. However, several hours of PMA and VEGF treatment were needed to elicit a detectable decrease in cellular Tie2, with complete loss seen at 24 h of PMA treatment. TNFα stimulated Tie1 cleavage, and induced a sustained decrease in cellular Tie1 over 24 h whilst increasing cellular Tie2. These differential effects of agonists on Tie1 and Tie2 result in dynamic modulation of the cellular Tie2∶Tie1 ratio. To assess the impact of this on Ang1 signalling cells were stimulated with VEGF and TNFα for differing times and Ang1-induced Tie2 phosphorylation examined. Elevated Tie2∶Tie1, in response to acute VEGF treatment or chronic TNFα, was associated with increased Ang1-activated Tie2 in cells. These data demonstrate cellular levels of Tie1 and Tie2 are differentially regulated by pathophysiologically relevant agonists resulting in dynamic control of the cellular Tie2∶Tie1 balance and modulation of Ang1 signalling. These findings highlight the importance of regulation of signalling at the level of the receptor. Such control may be an important adaptation to allow modulation of cellular signalling responses in systems in which the activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号