首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio vulnificus is a Gram-negative bacterium found in estuaries and coastal waters and is associated with human disease caused by ingestion of raw shellfish. Pathogenesis is directly related to the presence of capsular polysaccharide (CPS). Encapsulated virulent strains exhibit an opaque colony phenotype, while unencapsulated attenuated strains appear translucent. A third colony type, rugose, is caused by expression of rugose extracellular polysaccharide (rEPS) and forms robust biofilms. Vibrio vulnificus undergoes phase variation associated with altered levels of CPS and rEPS, and we show here that calcium (Ca2(+) ) significantly increases the rate of CPS and rEPS phase variation in this species. Interestingly, multiple phenotypic responses to increased [Ca2(+) ] were observed among strains, which suggests the existence of underlying cognate genetic or epigenetic differences. Certain translucent isolates contained deletions at the group I CPS operon, inferring increased [Ca2(+) ] upregulates existing phase variation mechanisms. Expanding on a previous observation (Kierek and Watnick, Proc. Natl. Acad. Sci. USA 100: 14357-14362, 2003), increased [Ca2(+) ] also enhanced biofilm formation for all phase variants. Our results show that Ca2(+) promotes both polysaccharide phase variation and biofilm formation of the resulting phase variants, thereby likely serving a dual role in persistence of V. vulnificus in the environment.  相似文献   

2.
Representative encapsulated strains of Vibrio vulnificus from market oysters and oyster-associated primary septicemia cases (25 isolates each) were tested in a blinded fashion for potential virulence markers that may distinguish strains from these two sources. These isolates were analyzed for plasmid content, for the presence of a 460-bp amplicon by randomly amplified polymorphic DNA PCR, and for virulence in subcutaneously (s.c.) inoculated, iron-dextran-treated mice. Similar percentages of market oyster and clinical isolates possessed detectable plasmids (24 and 36%, respectively), produced the 460-bp amplicon (45 and 50%, respectively), and were judged to be virulent in the mouse s.c. inoculation-iron-dextran model (88% for each). Therefore, it appears that nearly all V. vulnificus strains in oysters are virulent and that genetic tests for plasmids and specific PCR size amplicons cannot distinguish between fully virulent and less virulent strains or between clinical and environmental isolates. The inability of these methods to distinguish food and clinical V. vulnificus isolates demonstrates the need for alternative subtyping approaches and virulence assays.  相似文献   

3.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster's cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

4.
Vibrio vulnificus is a leading cause of seafood-related deaths in the United States. Sequence variations in the virulence-correlated gene (vcg) have been used to distinguish between clinical and environmental V. vulnificus strains, with a strong association between clinical ones and the C sequence variant (vcgC). In this study, vcgC was selected as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, sensitive, specific, and quantitative detection of potentially virulent V. vulnificus strains in raw oysters. No false-positive or false-negative results were generated among the 125 bacterial strains used to evaluate assay specificity. The detection limit was 5.4 CFU per reaction for a virulent V. vulnificus strain (ATCC 33815) in pure culture, 100-fold more sensitive than that of PCR. In spiked raw oysters, the assay was capable of detecting 2.5 × 10(3) CFU/g of V. vulnificus ATCC 33815, while showing negative results for a nonvirulent V. vulnificus strain (515-4c2) spiked at 10(7) CFU/g. After 6 h of enrichment, the LAMP assay could detect 1 CFU/g of the virulent V. vulnificus strain ATCC 33815. Standard curves generated in pure culture and spiked oysters suggested a good linear relationship between cell numbers of the virulent V. vulnificus strain and turbidity signals. In conclusion, the LAMP assay developed in this study could quantitatively detect potentially virulent V. vulnificus in raw oysters with high speed, specificity, and sensitivity, which may facilitate better control of V. vulnificus risks associated with raw oyster consumption.  相似文献   

5.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

6.
Commonly found in raw oysters, Vibrio vulnificus poses a serious health threat to immunocompromised individuals and those with serum iron overload, with a fatality rate of approximately 50%. An essential virulence factor is its capsular polysaccharide (CPS), which is responsible for a significant increase in virulence compared to nonencapsulated strains. However, this bacterium is known to vary the amount of CPS expressed on the cell surface, converting from an opaque (Op) colony phenotype to a translucent (Tr) colony phenotype. In this study, the consistency of CPS conversion was determined for four strains of V. vulnificus. Environmental conditions including variations in aeration, temperature, incubation time, oxidative stress, and media (heart infusion or modified maintenance medium agar) were investigated to determine their influence on CPS conversion. All conditions, with the exception of variations in media and oxidative stress, significantly affected the conversion of the population, with high ranges of CPS expression found even within cells from a single colony. The global quorum-sensing regulators RpoS and AI-2 were also examined. While RpoS was found to significantly mediate phenotypic conversion, quorum sensing was not. Finally, 12 strains that comprise the recently found clinical (C) and environmental (E) genotypes of V. vulnificus were examined to determine their rates of population conversion. C-genotype strains, which are most often associated with infection, had a significantly lower rate of population conversion from Op to Tr phenotypes than did E-genotype strains (ca. 38% versus ca. 14%, respectively). Biofilm capabilities of these strains, however, were not correlated with increased population conversion.  相似文献   

7.
Vibrio vulnificus biotype 1 strains can be classified into two genotypes based on the PCR analysis of variations in the virulence-correlated gene (vcg). Genotype has been correlated with human infection for 90% of isolates from human cases having the vcgC sequence type and 87% of environmental strains having the vcgE variant. In this study we examined the dynamics of V. vulnificus populations and the distribution of the two genotypes recovered from oysters and surrounding estuarine wasters. Analysis of 880 isolates recovered from oysters showed a disparity in the ratio of the two genotypes, with those of the vcgE (E) genotype accounting for 84.4% of the population. In contrast, 292 isolates recovered from the waters surrounding the oyster sites revealed an almost equal distribution of the two genotypes. The levels of vcgC (C genotype) strains from both sources increased as a percentage of the population as water temperatures increased, while no culturable V. vulnificus cells were recovered from December through February. Our results suggest that there is a selective advantage for strains of the E genotype within oysters while survival of the C genotype strains may be favored by increased water column temperatures. These data suggest that the low incidence of infections may be due to the comparatively rare consumption of an oyster that contains a greater number of V. vulnificus vcgC genotype strains than of vcgE genotype strains. Levels of the two genotypes as well as seasonal dynamics within both oyster tissue and the surrounding waters may aid in identifying risk factors associated with human infection.  相似文献   

8.
Vibrio vulnificus produces human disease associated with raw-oyster consumption or wound infections, but fatalities are limited to persons with chronic underlying illness. Capsular polysaccharide (CPS) is required for virulence, and CPS expression correlates with opaque (Op) colonies that show "phase variation" to avirulent translucent (Tr) phenotypes with reduced CPS. The results discussed here confirmed homology of a V. vulnificus CPS locus to the group 1 CPS operon in Escherichia coli. However, two distinct V. vulnificus genotypes or alleles were associated with the operon, and they diverged at sequences encoding hypothetical proteins and also at unique, intergenic repetitive DNA elements. Phase variation was examined under conditions that promoted high-frequency transition of Op to Tr forms. Recovery of Tr isolates in these experiments showed multiple genotypes, which were designated TR1, TR2, and TR3: CPS operons of TR1 isolates were identical to the Op parent, and cells remained phase variable but expressed reduced CPS. TR2 and TR3 showed deletion mutations in one (wzb) or multiple genes, respectively, and deletion mutants were acapsular and locked in the Tr phase. Complementation in trans restored the Op phenotype in strains with the wzb deletion mutation. Allelic variation in repetitive elements determined the locations, rates, and extents of deletion mutations. Thus, different mechanisms are responsible for reversible phase variation in CPS expression versus genetic deletions in the CPS operon of V. vulnificus. Repetitive-element-mediated deletion mutations were highly conserved within the species and are likely to promote survival in estuarine environments.  相似文献   

9.
The marine bacterium Vibrio vulnificus is a human pathogen that can spontaneously switch between virulent opaque and avirulent translucent phenotypes. Here, we document an additional form, the rugose variant, which produces copious biofilms and which may contribute both to pathogenicity of V. vulnificus and to its survival under adverse environmental conditions.  相似文献   

10.
Vibrio parahaemolyticus can resist oyster depuration, suggesting that it possesses specific factors for persistence. We show that type I pili, type IV pili, and both flagellar systems contribute to V. parahaemolyticus persistence in Pacific oysters whereas type III secretion systems and phase variation do not.  相似文献   

11.
A previous study has shown that Vibrio alginolyticus ZJ-51 undergoes colony phase variation between opaque/rugose (Op) and translucent/smooth (Tr). The AI-2 quorum-sensing master regulator ValR, a homolog to V. harveyi LuxR, was suggested to be involved in the transition. To investigate the role of ValR in the variation and in biofilm formation, an in-frame deletion of valR in both Op and Tr backgrounds was carried out. The mutants in both backgrounds showed an intermediate colony morphotype, where the colonies were less opaque/rugose but not fully translucent/smooth either. They also showed an intermediate level of motility. However, biofilm formation was severely decreased in both mutants and polar flagella were depleted also. Quantitative PCR showed that most of the genes related to flagellar and polysaccharide biosynthesis were upregulated in the mutant of Op background (ΔvalR/Op) but downregulated in the mutant of Tr background (ΔvalR/Tr) compared with their parental wild-type strains. This suggests that ValR may control biofilm formation by regulating flagellar biosynthesis and affect the expression of the genes involved in colony phase variation in V. alginolyticus.  相似文献   

12.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

13.
14.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

15.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

16.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

17.
Nonmotile Vibrio vulnificus strains were isolated as pure cultures from body ulcers and internal organs of wild diseased European eels caught in a Mediterranean freshwater coastal lagoon. All 54 V. vulnificus isolates were nonmotile, indole-, ornithine decarboxilase-, mannitol- and cellobiose-positive, developed the opaque variant in culture, belonged to the O-antigenic serovar A and were highly virulent for eels by both intraperitoneal injection and immersion challenges. The nonmotile phenotype found in our V. vulnificus isolates was stable: nonmotile cells were always recovered from experimentally infected eels; no variation in the immobility of the V. vulnificus cells was observed for repeated subculture by daily passages on solid media, at different temperatures or incubation times and with or without magnesium sulfate. Many of the fla genes of Vibrio were present in the genome of the nonmotile strains (flaCDE and flaFBA for flagellins and flaH for the distal capping protein), although we observed by transmission electron microscopy that these V. vulnificus strains always lacked the polar flagellum. This is the first report on the existence of nonmotile wild-type V. vulnificus strains.  相似文献   

18.
Lethal cold stress of Vibrio vulnificus in oysters.   总被引:7,自引:4,他引:3       下载免费PDF全文
Studies were conducted on the survival of Vibrio vulnificus, an estuarine human pathogen, in oyster homogenates held at 4 degrees C. Results indicated a rapid and dramatic decrease in viability not attributable to either cold shock or the oyster homogenate alone but to a combination of the two. Such a decline was not observed with Vibrio parahaemolyticus. Chilled V. vulnificus cells were unable to repair themselves in brain heart infusion broth at 37 degrees C. V. vulnificus cells incubated on whole raw oysters at 0.5 degrees C also exhibited a decline in viability, but of a lesser degree. The effects of various plating media were also investigated. The data reported here suggest that oysters kept on ice are not likely to be a major factor in the epidemiology of V. vulnificus infection. It is further suggested that the standard method of homogenizing oysters for examining bacteriological quality should not be followed because toxic compounds are released from the oysters during this process.  相似文献   

19.
In this paper we describe a biological indicator which can be used to study the behavior of Vibrio vulnificus, an important molluscan shellfish-associated human pathogen. A V. vulnificus ATCC 27562 derivative that expresses green fluorescent protein (GFP) and kanamycin resistance was constructed using conjugation. Strain validation was performed by comparing the GFP-expressing strain (Vv-GFP) and the wild-type strain (Vv-WT) with respect to growth characteristics, heat tolerance (45 degrees C), freeze-thaw tolerance (-20(o) and -80 degrees C), acid tolerance (pH 5.0, 4.0, and 3.5), cold storage tolerance (5 degrees C), cold adaptation (15 degrees C), and response to starvation. Levels of recovery were evaluated using nonselective medium (tryptic soy agar containing 2% NaCl) with and without sodium pyruvate. The indicator strain was subsequently used to evaluate the survival of V. vulnificus in oysters exposed to organic acids (citric and acetic acids) and various cooling regimens. In most cases, Vv-GFP was comparable to Vv-WT with respect to growth and survival upon exposure to various biological stressors; when differences between the GFP-expressing and parent strains occurred, they usually disappeared when sodium pyruvate was added to media. When V. vulnificus was inoculated into shellstock oysters, the counts dropped 2 log(10) after 11 to 12 days of refrigerated storage, regardless of the way in which the oysters were initially cooled. Steeper population declines after 12 days of refrigerated storage were observed for both iced and refrigerated products than for slowly cooled product and product held under conservative harvest conditions. By the end of the refrigeration storage study (22 days), the counts of Vv-GFP in iced and refrigerated oysters had reached the limit of detection (10(2) CFU/oyster), but slowly cooled oysters and oysters stored under conservative harvest conditions still contained approximately 10(3) and >10(4) CFU V. vulnificus/oyster by day 22, respectively. The Vv-GFP levels in the oyster meat remained stable for up to 24 h when the meat was exposed to acidic conditions at various pH values. Ease of detection and comparability to the wild-type parent make Vv-GFP a good candidate for use in studying the behavior of V. vulnificus upon exposure to sublethal stressors that might be encountered during postharvest handling of molluscan shellfish.  相似文献   

20.
Representative encapsulated strains of Vibrio vulnificus from market oysters and oyster-associated primary septicemia cases (25 isolates each) were tested in a blinded fashion for potential virulence markers that may distinguish strains from these two sources. These isolates were analyzed for plasmid content, for the presence of a 460-bp amplicon by randomly amplified polymorphic DNA PCR, and for virulence in subcutaneously (s.c.) inoculated, iron-dextran-treated mice. Similar percentages of market oyster and clinical isolates possessed detectable plasmids (24 and 36%, respectively), produced the 460-bp amplicon (45 and 50%, respectively), and were judged to be virulent in the mouse s.c. inoculation-iron-dextran model (88% for each). Therefore, it appears that nearly all V. vulnificus strains in oysters are virulent and that genetic tests for plasmids and specific PCR size amplicons cannot distinguish between fully virulent and less virulent strains or between clinical and environmental isolates. The inability of these methods to distinguish food and clinical V. vulnificus isolates demonstrates the need for alternative subtyping approaches and virulence assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号