首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

3.
Quorum sensing (QS) is a mechanism by which gram-negative bacteria regulate their gene expression by making use of cell density. QS is triggered by a small molecule known as an autoinducer. Typically, gram-negative bacteria such as Vibrio produce signaling molecules called acyl homoserine lactones (AHLs). However, their levels are very low, making them difficult to detect. We used thin layer chromatography (TLC) to examine AHLs in different Vibrio species, such as Vibrio alginolyticus, Vibrio parahemolyticus, and Vibrio cholerae, against a standard- Chromobacterium violaceum. Further, AHLs were characterised by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS). C4-HSL (N- butanoyl- L- homoserine lactone), C6-HSL (N- hexanoyl- L- homoserine lactone), 3-oxo-C8-HSL (N-(3-Oxooctanoyl)-DL-homoserine lactone), C8-HSL (N- octanoyl- L- homoserine lactone), C110-HSL (N- decanoyl- L- homoserine lactone), C12-HSL (N- dodecanoyl- L- homoserine lactone) and C14-HSL (N- tetradecanoyl- L- homoserine lactone) were identified from Vibrio. These results may provide a basis for blocking the AHL molecules of Vibrio, thereby reducing their pathogenicity and eliminating the need for antimicrobials.  相似文献   

4.
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C12-HSL with a sensor bioassay. Moreover, 3O-C12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P.aeruginosa 3O-C12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial – human cell communication.  相似文献   

5.
Our study focused on a Mesorhizobium sp. that is phylogenetically affiliated by 16S rRNA gene sequence to other marine and saline bacteria of this genus. Liquid chromatography-mass spectrometry investigations of the extract obtained from solid-phase extraction of cultures of this bacterium indicated the presence of several N-acyl homoserine lactones (AHLs), with chain lengths of C10 to C16. Chromatographic separation of the active bacterial extract yielded extraordinarily large amounts of two unprecedented acylated homoserine lactones, 5-cis-3-oxo-C12-homoserine lactone (5-cis-3-oxo-C12-HSL) (compound 1) and 5-cis-C12-HSL (compound 2). Quorum-sensing activity of compounds 1 and 2 was shown in two different biosensor systems [Escherichia coli MT102(pSB403) and Pseudomonas putida F117(pKR-C12)]. Furthermore, it was shown that both compounds can restore protease and pyoverdin production of an AHL-deficient Pseudomonas aeruginosa PAO1 lasI rhlI double mutant, suggesting that these signal molecules maybe used for intergenus signaling. In conclusion, these data indicate that the quorum-sensing activity of compounds 1 and 2 is modulated by the chain length and functional groups of the acyl moiety. Additionally, compound 1 showed antibacterial and cytotoxic activities.  相似文献   

6.
Quorum sensing affects the regulation of more than 300 genes in Pseudomonas aeruginosa, influencing growth, biofilm formation, and the biosynthesis of several products. The quorum sensing regulation mechanisms are mostly described in a qualitative character. Particularly, in this study, the kinetics of N-butyryl-homoserine lactone (C4-HSL) and rhamnolipid formation in P. aeruginosa PAO1 were of interest. In this system, the expression of the rhamnolipid biosynthesis genes rhlAB is directly coupled to the C4-HSL concentration via the rhl system. Batch cultivations in a bioreactor with sunflower oil have been used for these investigations. 3-oxo-dodecanoyl-homoserine lactone (3o-C12-HSL) displayed a lipophilic character and accumulated in the hydrophobic phase. Degradation of C4-HSL has been found to occur in the aqueous supernatant of the culture by yet unknown extracellular mechanisms, and production was found to be proportional to biomass concentration rather than by autoinduction mechanisms. Rhamnolipid production rates, as determined experimentally, were shown to correlate linearly with the concentration of autoinducer C4-HSL. These findings were used to derive a simple model, wherein a putative, extracellular protein with C4-HSL degrading activity was assumed (putative C4-HSL acylase). The model is based on data for catalytic efficiency of HSL-acylases extracted from literature (k cat/K m), experimentally determined basal C4-HSL production rates (q C4?-?HSL basal), and two fitted parameters which describe the formation of the putative acylase and is therefore comparatively simple.  相似文献   

7.
In Pseudomonas aeruginosa, a quorum sensing (QS) system regulates the expression of many virulence factors. N-acyl homoserine lactone (HSL) is the signal molecule of QS system. In order to find a novel HSL binder to interfere with QS signaling and to attenuate P. aeruginosa virulence, an amino lactam surrogate (ALS) of HSL was used as a target to screen HSL aptamers with the technique of systematic evolution of ligands by exponential enrichment (SELEX). Eight HSL aptamers with high affinities for 3O-C12-HSL (20 nM ≤ K d < 35 nM) or C4-HSL (25 nM < K d < 50 nM) were finally obtained. In vitro QS-inhibiting study of P. aeruginosa showed that HSL aptamers could inhibit virulence in a dose-dependent manner. ALSap-8 which bound C4-HSL primarily acted on the rhl system and inhibited the secretion of pyocyanin. ALSap-5 which bound 3O-C12-HSL not only showed strong inhibitory activity on biofilm formation as well as secretions of LasA protease and LasB elastase, but also reduced pyocyanin secretion. Since the las system is capable of activating the rhl system mildly, we speculated that ALSap-5 can simultaneously interfere with the las and rhl systems. High-affinity aptamers against HSL in this study are novel QS and virulence-inhibitors, and may have potential as drug candidates for the treatment of P. aeruginosa infection.  相似文献   

8.
Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.  相似文献   

9.
Some members of the moderately halophilic genus Halomonas, such as H. eurihalina, H. maura, H. ventosae and H. anticariensis, produce exopolysaccharides with applications in many industrial fields. We report here that these four species also produce autoinducer molecules that are involved in the cell-to-cell signaling process known as quorum sensing. By using the N-acyl homoserine lactone (AHL) indicator strains Agrobacterium tumefaciens NTL4 (pZRL4) and Chromobacterium violaceum CV026, we discovered that all the Halomonas strains examined synthesize detectable AHL signal molecules. The synthesis of these compounds was growth-phase dependent and maximal activity was reached during the late exponential to stationary phases. One of these AHLs seems to be synthesized only in the stationary phase. Some of the AHLs produced by H. anticariens FP35T were identified by gas chromatography/mass spectrometry and electrospray ionization tandem mass spectrometry as N-butanoyl homoserine lactone (C4-HL), N-hexanoyl homoserine lactone (C6-HL), N-octanoyl homoserine lactone (C8-HL) and N-dodecanoyl homoserine lactone (C12-HL). This study suggests that quorum sensing may also play an important role in extreme environments.  相似文献   

10.
Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species.  相似文献   

11.
Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis of N-(3-oxooctanoyl)homoserine lactone by TraI was unaffected in a fadD mutant blocked in β-oxidative fatty acid degradation. Also, conditions known to induce the fad regulon did not increase autoinducer synthesis. In contrast, cerulenin and diazoborine, specific inhibitors of fatty acid synthesis, both blocked autoinducer synthesis even in a strain dependent on β-oxidative fatty acid degradation for growth. These data provide the first in vivo evidence that the acyl chains in autoinducers synthesized by LuxI-family synthases are derived from acyl-acyl carrier protein substrates rather than acyl coenzyme A substrates. Also, we show that decreased levels of intracellular S-adenosylmethionine caused by expression of bacteriophage T3 S-adenosylmethionine hydrolase result in a marked reduction in autoinducer synthesis, thus providing direct in vivo evidence that the homoserine lactone ring of LuxI-family autoinducers is derived from S-adenosylmethionine.  相似文献   

12.
Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 μg cm−minus;2 (3.36 mmol l−minus;1). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.  相似文献   

13.
Reducing iron (Fe) levels in a defined minimal medium reduced the growth yields of planktonic and biofilm Pseudomonas aeruginosa, though biofilm biomass was affected to the greatest extent and at FeCl3 concentrations where planktonic cell growth was not compromised. Highlighting this apparently greater need for Fe, biofilm growth yields were markedly reduced in a mutant unable to produce pyoverdine (and, so, deficient in pyoverdine-mediated Fe acquisition) at concentrations of FeCl3 that did not adversely affect biofilm yields of a pyoverdine-producing wild-type strain. Concomitant with the reduced biofilm yields at low Fe concentrations, P. aeruginosa showed enhanced twitching motility in Fe-deficient versus Fe-replete minimal media. A mutant deficient in low-Fe-stimulated twitching motility but normal as regards twitching motility on Fe-rich medium was isolated and shown to be disrupted in rhlI, whose product is responsible for synthesis of the N-butanoyl homoserine lactone (C4-HSL) quorum-sensing signal. In contrast to wild-type cells, which formed thin, flat, undeveloped biofilms in Fe-limited medium, the rhlI mutant formed substantially developed though not fully mature biofilms under Fe limitation. C4-HSL production increased markedly in Fe-limited versus Fe-rich P. aeruginosa cultures, and cell-free low-Fe culture supernatants restored the twitching motility of the rhlI mutant on Fe-limited minimal medium and stimulated the twitching motility of rhlI and wild-type P. aeruginosa on Fe-rich minimal medium. Still, addition of exogenous C4-HSL did not stimulate the twitching motility of either strain on Fe-replete medium, indicating that some Fe-regulated and RhlI/C4-HSL-dependent extracellular product(s) was responsible for the enhanced twitching motility (and reduced biofilm formation) seen in response to Fe limitation.  相似文献   

14.
15.
Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C6. Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.  相似文献   

16.
The marine roseobacter Phaeobacter sp. strain Y4I synthesizes the blue antimicrobial secondary metabolite indigoidine when grown in a biofilm or on agar plates. Prior studies suggested that indigoidine production may be, in part, regulated by cell-to-cell communication systems. Phaeobacter sp. strain Y4I possesses two luxR and luxI homologous N-acyl-l-homoserine lactone (AHL)-mediated cell-to-cell communication systems, designated pgaRI and phaRI. We show here that Y4I produces two dominant AHLs, the novel monounsaturated N-(3-hydroxydodecenoyl)-l-homoserine lactone (3OHC12:1-HSL) and the relatively common N-octanoyl-l-homoserine lactone (C8-HSL), and provide evidence that they are synthesized by PhaI and PgaI, respectively. A Tn5 insertional mutation in either genetic locus results in the abolishment (pgaR::Tn5) or reduction (phaR::Tn5) of pigment production. Motility defects and denser biofilms were also observed in these mutant backgrounds, suggesting an overlap in the functional roles of these systems. Production of the AHLs occurs at distinct points during growth on an agar surface and was determined by isotope dilution high-performance liquid chromatography–tandem mass spectrometry (ID-HPLC-MS/MS) analysis. Within 2 h of surface inoculation, only 3OHC12:1-HSL was detected in agar extracts. As surface-attached cells became established (at ∼10 h), the concentration of 3OHC12:1-HSL decreased, and the concentration of C8-HSL increased rapidly over 14 h. After longer (>24-h) establishment periods, the concentrations of the two AHLs increased to and stabilized at ∼15 nM and ∼600 nM for 3OHC12:1-HSL and C8-HSL, respectively. In contrast, the total amount of indigoidine increased steadily from undetectable to 642 μM by 48 h. Gene expression profiles of the AHL and indigoidine synthases (pgaI, phaI, and igiD) were consistent with their metabolite profiles. These data provide evidence that pgaRI and phaRI play overlapping roles in the regulation of indigoidine biosynthesis, and it is postulated that this allows Phaeobacter sp. strain Y4I to coordinate production of indigoidine with different growth-phase-dependent physiologies.  相似文献   

17.
Peroxisome proliferator activated receptor (PPARγ) has been suggested as a target for anti-inflammatory therapy in chronic lung disease, including infection with Pseudomonas aeruginosa. However, the P. aeruginosa signal molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) has been reported to inhibit function of PPARs in mammalian cells. This suggests that binding of 3-oxo-C12-HSL to PPARs could increase inflammation during P. aeruginosa infection, particularly if it could compete for binding with other PPAR ligands. We investigated the ability of 3-oxo-C12-HSL to bind to a PPARγ ligand binding domain (LBD) construct, and to compete for binding with the highly active synthetic PPARγ agonist rosiglitazone. We demonstrate that 3-oxo-C12-HSL binds effectively to the PPARγ ligand binding domain, and that concentrations of 3-oxo-C12-HSL as low as 1 nM can effectively interfere with the binding of rosiglitazone to the PPARγ ligand binding domain. Because 3-oxo-C12 HSL has been demonstrated in lungs during P. aeruginosa infection, blockade of PPARγ-dependent signaling by 3-oxo-C12-HSL produced by the infecting P. aeruginosa could exacerbate infection-associated inflammation, and potentially impair the action of PPAR-activating therapy. Thus the proposed use of PPARγ agonists as anti-inflammatory therapy in lung P. aeruginosa infection may depend on their ability to counteract the effects of 3-oxo-C12-HSL.  相似文献   

18.
Quorum sensing (QS) systems, which depend on N-acylhomoserine lactone (AHL) signal molecules, mediate the production of virulence factors in many pathogenic microorganisms. One hundred and forty-six bacterial strains, isolated from a bivalve hatchery, were screened for their capacity to degrade five synthetic AHLs [N-butyryl-dl-homoserine lactone (C4-HSL), N-hexanoyl-dl-homoserine lactone (C6-HSL), N-octanoyl-dl-homoserine lactone (C8-HSL), N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL)] using well diffusion agar-plate assays with three biosensors, Chromobacterium violaceum CV026, C. violaceum VIR07 and Agrobacterium tumefaciens NTL4 (pZLR4). The results of these assays led to our choosing four strains (PP2-67, PP2-459, PP2-644 and PP2-663) that were able to degrade all five synthetic AHLs, thus showing a wide spectrum of quorum quenching (QQ) activity. We subsequently confirmed and measured the QQ activity of the four strains by high-performance liquid chromatography plus mass-spectrometry analysis (HPLC–MS). One of the strains which showed the highest AHL-degrading activity, PP2-459, identified as being a member of the genus Thalassomonas was chosen for further study. Finally, using thin-layer chromatography (TLC), we went on to confirm this strain's capacity to degrade the AHLs produced by other non-pathogenic and pathogenic bacteria not taxonomically related.  相似文献   

19.
20.
To investigate quorum sensing in rhizosphere soil, a whole-cell biosensor, Agrobacterium tumefaciens(pAHL-Ice), was constructed. The biosensor responded to all N-acyl homoserine lactones (AHLs) tested, except C4 homoserine lactone, with a minimum detection limit of 10−12 M, as well as to both exogenously added AHLs and AHL-producing bacterial strains in soil. This highly sensitive biosensor reveals for the first time the increased AHL availability in intact rhizosphere microbial communities compared to that in bulk soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号