首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No evidence of Neandertal mtDNA contribution to early modern humans   总被引:2,自引:1,他引:1  
The retrieval of mitochondrial DNA (mtDNA) sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.  相似文献   

2.
Bi CL  Guo GY  Zhang X  Tian YH  Shen YZ 《遗传》2012,34(6):659-665
尼安德特人是现代人最近的旁支,也是化石资料最丰富的古人类。在现代人起源问题的争论中,尼安德特人对现代人是否有遗传贡献是一个焦点问题。文章综述了近年来关于尼安德特人线粒体基因组和核基因组的研究进展,初步研究表明尼安德特人可能对现代人有遗传贡献,这引发了人们对现代人起源问题的重新思考。藉尼人基因组研究经验进行的古人类基因组学研究将有望揭开现代人起源的谜团,并丰富进化生物学相关领域的理论体系。  相似文献   

3.
The Mezmaiskaya cave mtDNA is similar in many ways to the Feldhofer cave Neandertal sequence and the more recently obtained Vindija cave sequence. If we accept the contention that the Mezmaiskaya cave specimen is a Neandertal infant, its mtDNA provides no new information about the fate of the European Neandertals. However, there is reason to believe that the Mezmaiskaya cave infant is not a Neandertal, and this places its importance in another light, because it delimits the possible hypotheses of Neandertal and recent human genetic relationships. One possibility is a that the pattern found in ancient mtDNA results from the replacement of an isolated gene pool (Neandertals) by one of its contemporaries (modern humans). A second possibility is natural selection expressed as the substitution of an advantageous mtDNA variant within a single large species, including both Neandertals and modern humans. The geologic, archaeological, and dating evidence shows the Mezmaiskaya cave infant to be a burial from a level even more recent than the Upper Paleolithic preserved at the site, and its anatomy does not contradict the assessment that the Mezmaiskaya cave infant is not a Neandertal. Therefore, the second pattern can be favored over the first.  相似文献   

4.

Background

DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans.

Methodology/Principal Findings

We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences.

Conclusions/Significance:

The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.  相似文献   

5.
Comparisons of DNA sequences between Neandertals and present-day humans have shown that Neandertals share more genetic variants with non-Africans than with Africans. This could be due to interbreeding between Neandertals and modern humans when the two groups met subsequent to the emergence of modern humans outside Africa. However, it could also be due to population structure that antedates the origin of Neandertal ancestors in Africa. We measure the extent of linkage disequilibrium (LD) in the genomes of present-day Europeans and find that the last gene flow from Neandertals (or their relatives) into Europeans likely occurred 37,000–86,000 years before the present (BP), and most likely 47,000–65,000 years ago. This supports the recent interbreeding hypothesis and suggests that interbreeding may have occurred when modern humans carrying Upper Paleolithic technologies encountered Neandertals as they expanded out of Africa.  相似文献   

6.
Neandertals, the archaic human form documented in Eurasia until 29,000 years ago, share no mitochondrial haplotype with modern Europeans. Whether this means that the two groups were reproductively isolated is controversial, and indeed nuclear data have been interpreted as suggesting that they admixed. We explored the range of demographic parameters that may have generated the observed mitochondrial diversity, simulating 3.0 million genealogies under six models differing as for the relationships among contemporary Europeans, Neandertals, and Upper Palaeolithic European early modern humans (EEMH), who coexisted with Neandertals for millennia. We compared by Approximate Bayesian Computations the simulation results with mitochondrial diversity in 7 Neandertals, 3 EEMH, and 150 opportunely chosen modern Europeans. A model of genealogical continuity between EEMH and contemporary Europeans, with no Neandertal contribution, received overwhelming support from the analyses. The maximum degree of Neandertal admixture, under the model of gene flow supported by nuclear data, was estimated at 1.5%, but this model proved 20-32 times less likely than a model without any gene flow. Nuclear and mitochondrial evidence might be reconciled if smaller population sizes led to faster lineage sorting for mitochondrial DNA, and Neandertals shared a longer period of common ancestry with the non-African's than with the African's ancestors.  相似文献   

7.
A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.  相似文献   

8.
The recent extraction of mitochondrial DNA sequences from three European Neandertal fossils has led many to the conclusion that ancient DNA analysis supports the African replacement model of modern human origins and rejects models of multiregional evolution that propose some Neandertal ancestry in living humans. This conclusion is based, in part, on the lack of regional affinity of Neandertal DNA to that from living Europeans. Consideration of migration matrix models shows that this conclusion is premature, since under a model of interregional gene flow we expect to see similar levels of Neandertal ancestry in all contemporary regions, and living Europeans should not necessarily show closer affinity. The absence of regional affinity in Neandertal DNA does not distinguish between replacement and multiregional models.  相似文献   

9.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

10.
Increased longevity, expressed as the number of individuals surviving to older adulthood, represents a key way that Upper Paleolithic Europeans differ from earlier European (Neandertal) populations. Here, we address whether longevity increased as a result of cultural/adaptive change in Upper Paleolithic Europe, or whether it was introduced to Europe as a part of modern human biology. We compare the ratio of older to younger adults (OY ratio) in an early modern human sample associated with the Middle Paleolithic from Western Asia with OY ratios of European Upper Paleolithic moderns and penecontemporary Neandertals from the same region. We also compare these Neandertals to European Neandertals. The difference between the OY ratios of modern humans of the Middle and Upper Paleolithic is large and significant, but there is no significant difference between the Neandertals and early modern humans of Western Asia. Longevity for the West Asian Neandertals is significantly more common than for the European Neandertals. We conclude that the increase in adult survivorship associated with the Upper Paleolithic is not a biological attribute of modern humans, but reflects important cultural adaptations promoting the demographic and material representations of modernity.  相似文献   

11.
12.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

13.
The derived FOXP2 variant of modern humans was shared with Neandertals   总被引:1,自引:0,他引:1  
Although many animals communicate vocally, no extant creature rivals modern humans in language ability. Therefore, knowing when and under what evolutionary pressures our capacity for language evolved is of great interest. Here, we find that our closest extinct relatives, the Neandertals, share with modern humans two evolutionary changes in FOXP2, a gene that has been implicated in the development of speech and language. We furthermore find that in Neandertals, these changes lie on the common modern human haplotype, which previously was shown to have been subject to a selective sweep. These results suggest that these genetic changes and the selective sweep predate the common ancestor (which existed about 300,000-400,000 years ago) of modern human and Neandertal populations. This is in contrast to more recent age estimates of the selective sweep based on extant human diversity data. Thus, these results illustrate the usefulness of retrieving direct genetic information from ancient remains for understanding recent human evolution.  相似文献   

14.
Paleoanthropologists have long noted the unique "hyper-barrel-shaped" Neandertal thorax as inferred from fragmentary ribs, clavicles, and sterna. Yet scholars disagree whether the Neandertal thorax represents an adaptation to cold climates or elevated activity levels. Given the difficulties of reconstructing overall chest shape from isolated and fragmentary thoracic skeletal elements, it is worthwhile comparing Neandertals and contemporaneous early modern human fossils from the same geographic region to recent modern human skeletons that are known to have enlarged chests. This study compares thoracic skeletal morphology in two Near Eastern Neandertals (Tabūn C1 and Shanidar 3) and two early modern humans from the same region (Skhūl IV and V) with four samples of recent modern human skeletons from the Andes (n=347): two coastal groups and two groups from high altitudes. The two highland groups, similar to their living descendants, exhibit morphological evidence of anteroposteriorly deep and mediolaterally wide chests as part of respiratory adaptations to high-altitude hypoxia. I calculated the percentage of deviation of each Neandertal and early modern human fossil from the means of the four recent modern human samples for clavicle and rib lengths and curvatures. Shanidar 3 and Tabūn C1 exhibit ribs that are slightly larger and less curved than the Andean samples, indicating slightly larger thoracic skeletons than modern humans who are known to have enlarged chests in response to increased respiratory demands. Skhūl IV and V have significantly shorter ribs with greater curvature suggesting especially narrow thoracic skeletons. Comparisons with Andean populations suggest that the enlarged thoraces of Neandertals may reflect high activity levels, although results from this study do not exclude cold adaptation as an explanatory factor.  相似文献   

15.
A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on.  相似文献   

16.
Elevated substitution rates estimated from ancient DNA sequences   总被引:1,自引:0,他引:1  
Ancient DNA sequences are able to offer valuable insights into molecular evolutionary processes, which are not directly accessible via modern DNA. They are particularly suitable for the estimation of substitution rates because their ages provide calibrating information in phylogenetic analyses, circumventing the difficult task of choosing independent calibration points. The substitution rates obtained from such datasets have typically been high, falling between the rates estimated from pedigrees and species phylogenies. Many of these estimates have been made using a Bayesian phylogenetic method that explicitly accommodates heterochronous data. Stimulated by recent criticism of this method, we present a comprehensive simulation study that validates its performance. For datasets of moderate size, it produces accurate estimates of rates, while appearing robust to assumptions about demographic history. We then analyse a large collection of 749 ancient and 727 modern DNA sequences from 19 species of animals, plants and bacteria. Our new estimates confirm that the substitution rates estimated from ancient DNA sequences are elevated above long-term phylogenetic levels.  相似文献   

17.
The present study describes and analyzes new Neandertal and early modern human auditory ossicles from the sites of Qafzeh and Amud in southwest Asia. Some methodological issues in the measurement of these bones are considered, and a set of standardized measurement protocols is proposed. Evidence of erosive pathological processes, most likely attributed to otitis media, is present on the ossicles of Qafzeh 12 and Amud 7 but none can be detected in the other Qafzeh specimens. Qafzeh 12 and 15 extend the known range of variation in the fossil H. sapiens sample in some metric variables, but morphologically, the new specimens do not differ in any meaningful way from living humans. In most metric dimensions, the Amud 7 incus falls within our modern human range of variation, but the more closed angle between the short and long processes stands out. Morphologically, all the Neandertal incudi described to date show a very straight long process. Several tentative hypotheses can be suggested regarding the evolution of the ear ossicles in the genus Homo. First, the degree of metric and morphological variation seems greater among the fossil H. sapiens sample than in Neandertals. Second, there is a real difference in the size of the malleus between Neandertals and fossil H. sapiens, with Neandertals showing larger values in most dimensions. Third, the wider malleus head implies a larger articular facet in the Neandertals, and this also appears to be reflected in the larger (taller) incus articular facet. Fourth, there is limited evidence for a potential temporal trend toward reduction of the long process within the Neandertal lineage. Fifth, a combination of features in the malleus, incus, and stapes may indicate a slightly different relative positioning of either the tip of the incus long process or stapes footplate within the tympanic cavity in the Neandertal lineage.  相似文献   

18.
The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.  相似文献   

19.
The place of Neandertals in modern human emergence has been a subject of debate since the first recognized Neandertal skeleton was discovered in 1856. This paper presents an overview of morphological, archaeological, and genetic evidence commonly used in discussions of Neandertals and their evolutionary significance. A brief historical sketch of the argument provides insight into the changing views on these interesting people. The major models proposed to explain modern human origins are also discussed.  相似文献   

20.
The recent publication of three old Neandertal mitochondrial sequences shows that the genetic diversity of the Neandertals has been largely underestimated. It suggests that the Neandertal population was extensively subdivided geographically, and that its genetic diversity changed markedly over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号