首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The site of interaction of phage Qbeta coat protein with Qbeta RNA was determined by ribonuclease T1 degradation of complexes of coat protein and [32P]-RNA obtained by codialysis of the components from urea into buffer solutions. The degraded complexes were recovered by filtration through nitrocellulose filters, and bound [32P]RNA fragments were extracted and separated by polyacrylamide gel electrophoresis. Fingerprinting and further sequence analysis established that the three main fragments obtained (chain lengths 88, 71 and 27 nucleotides) all consist of sequences extending from the intercistronic region to the beginning of the replicase cistron. These results suggest that in the replication of Qbeta, as in the case of R17, coat protein acts as a translational repressor by binding to the ribosomal initiation site of the replicase cistron.  相似文献   

2.
The coat protein of bacteriophage MS2 functions as a symmetric dimer to bind an asymmetric RNA hairpin. This implies the existence of two equivalent RNA binding sites related to one another by a 2-fold symmetry axis. In this view the symmetric binding site defined by mutations conferring the repressor-defective phenotype is a composite picture of these two asymmetric sites. In order to determine whether the RNA ligand interacts with amino acid residues on both subunits of the dimer and in the hope of constructing a functional map of the RNA binding site, we performed heterodimer complementation experiments. Taking advantage of the physical proximity of their N- and C-termini, the two subunits of the dimer were genetically fused, producing a duplicated coat protein which folds normally and allows the construction of the functional equivalent of obligatory heterodimers containing all possible pairwise combinations of the repressor-defective mutations. The restoration of repressor function in certain heterodimers shows that a single RNA molecule interacts with both subunits of the dimer and allows the construction of a functional map of the binding site.  相似文献   

3.
We present the results of in vitro binding studies aimed at defining the key recognition elements on the MS2 RNA translational operator (TR) essential for complex formation with coat protein. We have used chemically synthesized operators carrying modified functional groups at defined nucleotide positions, which are essential for recognition by the phage coat protein. These experiments have been complemented with modification-binding interference assays. The results confirm that the complexes which form between TR and RNA-free phage capsids, the X-ray structure of which has recently been reported at 3.0 A, are identical to those which form in solution between TR and a single coat protein dimer. There are also effects on operator affinity which cannot be explained simply by the alteration of direct RNA-protein contacts and may reflect changes in the conformational equilibrium of the unliganded operator. The results also provide support for the approach of using modified oligoribonucleotides to investigate the details of RNA-ligand interactions.  相似文献   

4.
5.
RNA binding properties of the coat protein from bacteriophage GA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The coat protein of bacteriophage GA, a group II RNA phage, binds to a small RNA hairpin corresponding to its replicase operator. Binding is specific, with a Ka of 71 microM -1. This interaction differs kinetically from the analogous coat protein-RNA hairpin interactions of other RNA phage and also deviates somewhat in its pH and salt dependence. Despite 46 of 129 amino acid differences between the GA and group I phage R17 coat proteins, the binding sites are fairly similar. The essential features of the GA coat protein binding site are a based-paired stem with an unpaired purine and a four nucleotide loop having an A at position -4 and a purine at -7. Unlike the group I phage proteins, the GA coat protein does not distinguish between two alternate positions for the unpaired purine and does not show high specificity for a pyrimidine at position -5 of the loop.  相似文献   

6.
RNA binding site of R17 coat protein   总被引:58,自引:0,他引:58  
The specific interaction between R17 coat protein and its target of translational repression at the initiation site of the R17 replicase gene was studied by synthesizing variants of the RNA binding site and measuring their affinity to the coat protein by using a nitrocellulose filter binding assay. Substitution of two of the seven single-stranded residues by other nucleotides greatly reduced the Ka, indicating that they are essential for the RNA-protein interaction. In contrast, three other single-stranded residues can be substituted without altering the Ka. When several of the base-paired residues in the binding site are altered in such a way that pairing is maintained, little change in Ka is observed. However, when the base pairs are disrupted, coat protein does not bind. These data suggest that while the hairpin loop structure is essential for protein binding, the base-paired residues do not contact the protein directly. On the basis of these and previous data, a model for the structural requirements of the R17 coat protein binding site is proposed. The model was successfully tested by demonstrating that oligomers with sequences quite different from the replicase initiator were able to bind coat protein.  相似文献   

7.
We have analyzed the molecular mechanism that makes translation of the MS2 replicase cistron dependent on the translation of the upstream coat cistron. Deletion mapping on cloned cDNA of the phage shows that the ribosomal binding site of the replicase cistron is masked by a long distance basepairing to an internal coat cistron region. Removal of the internal coat cistron region leads to uncoupled replicase synthesis. Our results confirm the model as originally proposed by Min Jou et al. (1). Activation of the replicase start is sensitive to the frequency of upstream translation, but never reaches the level of uncoupled replicase synthesis.  相似文献   

8.
The RNA bacteriophages of E. coli specifically encapsidate a single copy of the viral genome in a protein shell composed mainly of 180 molecules of coat protein. Coat protein is also a translational repressor and shuts off viral replicase synthesis by interaction with a RNA stem-loop containing the replicase initiation codon. We wondered whether the translational operator also serves as the viral pac site, the signal which mediates the exclusive encapsidation of viral RNA by its interaction with coat protein. To test this idea we measured the ability of lacZ RNA fused to the translational operator to be incorporated into virus-like particles formed from coat protein expressed from a plasmid. The results indicate that the operator-lacZ RNA is indeed encapsidated and that nucleotide substitutions in the translational operator which reduce the tightness of the coat protein-operator interaction also reduce or abolish encapsidation of the hybrid RNA. When coat protein is expressed in excess compared to the operator-lacZ RNA, host RNAs are packaged as well. However, elevation of the level of operator-lacZ RNA relative to coat protein results in its selective encapsidation at the expense of cellular RNAs. Our results are consistent with the proposition that this single protein-RNA interaction accounts both for translational repression and viral genome encapsidation.  相似文献   

9.
Genomic SELEX is a method for studying the network of nucleic acid–protein interactions within any organism. Here we report the discovery of several interesting and potentially biologically important interactions using genomic SELEX. We have found that bacteriophage MS2 coat protein binds several Escherichia coli mRNA fragments more tightly than it binds the natural, well-studied, phage mRNA site. MS2 coat protein binds mRNA fragments from rffG (involved in formation of lipopolysaccharide in the bacterial outer membrane), ebgR (lactose utilization repressor), as well as from several other genes. Genomic SELEX may yield experimentally induced artifacts, such as molecules in which the fixed sequences participate in binding. We describe several methods (annealing of oligonucleotides complementary to fixed sequences or switching fixed sequences) to eliminate some, or almost all, of these artifacts. Such methods may be useful tools for both randomized sequence SELEX and genomic SELEX.  相似文献   

10.
The coat proteins of the RNA phages MS2 and Qbetaare structurally homologous, yet they specifically bind different RNA structures. In an effort to identify the basis of RNA binding specificity we sought to isolate mutants that convert MS2 coat protein to the RNA binding specificity of Qbeta. A library of mutations was created which selectively substitutes amino acids within the RNA binding site. Genetic selection for the ability to repress translation from the Qbetatranslational operator led to the isolation of several MS2 mutants that acquired binding activity for QbetaRNA. Some of these also had reduced abilities to repress translation from the MS2 translational operator. These changes in RNA binding specificity were the results of substitutions of amino acid residues 87 and 89. Additional codon- directed mutagenesis experiments confirmed earlier results showing that the identity of Asn87 is important for specific binding of MS2 RNA. Glu89, on the other hand, is not required for recognition of MS2 RNA, but prevents binding of QbetaRNA.  相似文献   

11.
We have probed the effects of altering buffer conditions on the behaviour of two aptamer RNAs for the bacteriophage MS2 coat protein using site-specific substitution of 2′-deoxy-2-aminopurine nucleotides at key adenosine positions. These have been compared to the wild-type operator stem–loop oligonucleotide, which is the natural target for the coat protein. The fluorescence emission spectra show a position and oligonucleotide sequence dependence which appears to reflect local conformational changes. These are largely similar between the differing oligonucleotides and deviations can be explained by the individual features of each sequence. Recognition by coat protein is enhanced, unaffected or decreased depending on the site of substitution, consistent with the known protein–RNA contacts seen in crystal structures of the complexes. These data suggest that the detailed conformational dynamics of aptamers and wild-type RNA ligands for the same protein target are remarkably similar.  相似文献   

12.
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand.  相似文献   

13.
14.
Previous studies implicated cysteine residues in the translational repressor (i.e. RNA binding) activity of the coat protein of bacteriophage MS2. It has been proposed that a protein sulfhydryl forms a transient covalent bond with an essential pyrimidine in the translational operator by a Michael addition reaction. We have utilized codon-directed mutagenesis methods to determine the importance of each of the two coat protein cysteines for repressor function in vivo. The results indicate that cys46 can be replaced by a variety of amino acids without loss of repressor function. Cys101, on the other hand, is more sensitive to substitution. Most position 101 substitutions inactivate the repressor, but one (arginine) results in normal repressor activity. Although the possibility of a transient covalent contact between cys101 and RNA is not categorically ruled out, construction of double mutants demonstrates that cysteines are not absolutely required for translational repression by coat protein.  相似文献   

15.
16.
Formation of complexes between f2 RNA polymerase cistron was partially inhibited, some RNA and coat protein was studied using salt conditions which are optimum for phage protein synthesis. In this ionic environment, coat protein precipitation can be prevented by sulfhydryl group-protecting agents. Complexes formed at different protein-RNA input molar ratios were isolated and tested for template activity in an in vitro protein synthesizing system. Simultaneously, the number of protein molecules bound per RNA strand in such complexes was measured by the membrane (Millipore) filtration technique. Under conditions in which translation of the RNA strands were complexed with six molecules of coat protein, whereas some remained unbound. Strong inhibition of the translation of the RNA polymerase cistron was observed when each of the RNA strands present in the mixture was associated with six molecules of coat protein.  相似文献   

17.
Thermal activation of tritium gas is used for labeling of the nucleoprotein, phage MS 2. The obtained preparation of tritiated phage has a specific radioactivity of 20-50 Ci/mmole, is considerably infectious and appears suitable for a wide range of studies. The radioactivity is distributed between intraphage RNA and phage outer protein (approximately 1:3 ratio). Consequently, phage capsid is porous and sufficiently permeable for activated tritium atoms.  相似文献   

18.
19.
A prominent feature of the interaction of MS2 coat protein with RNA is the quasi-symmetric insertion of a bulged adenine (A-10) and a loop adenine (A-4) into conserved pockets on each subunit of the coat protein dimer. Because of its presence in both of these adenine-binding pockets, Thr(45) is thought to play an important role in interaction with RNA on both subunits of the dimer. To test the significance of Thr(45), we introduced all 19 amino acid substitutions. However, we were initially unable to determine the effects of the mutations on RNA binding because every substitution compromised the ability of coat protein to fold correctly. Genetic fusion of coat protein subunits reverted these protein structural defects, allowing us to show that the RNA binding activity of coat protein tolerates substitution of Thr(45), but only on one or the other subunit of the dimer. Single-chain heterodimer complementation experiments suggest that the primary site of Thr(45) interaction with RNA is with A-4 in the translational operator. Either contact of Thr(45) with A-10 makes little contribution to stability of the RNA-protein complex, or the effects of Thr(45) substitution are offset by conformational adjustments that introduce new, favorable contacts at nearby sites.  相似文献   

20.
A covalent dimer of the bacteriophage MS2 coat protein was created by performing genetic fusion of two copies of the gene while removing the stop codon of the first gene. The dimer was crystallized in the cubic F432 space group. The organization of the asymmetric unit together with the F432 symmetry results in an arrangement of subunits that corresponds to T = 3 octahedral particles. The octahedral particles are probably artifacts created by the particular crystal packing. When it is not crystallized in the F cubic crystal form, the coat protein dimer appears to assemble into T = 3 icosahedral particles indistinguishable from the wild-type particles. To form an octahedral particle with closed surface, the dimer subunits interact at sharper angles than in the icosahedral arrangement. The fold of the covalent dimer is almost identical to the wild-type dimer with differences located in loops and in the covalent linker region. The main differences in the subunit packing between the octahedral and icosahedral arrangements are located close to the fourfold and fivefold symmetry axes where different sets of loops mediate the contacts. The volume of the wild-type virions is 7 times bigger than that of the octahedral particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号