首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a quantitative substitution interference technique to examine the role of Pro-Rp oxygens in the phosphodiester backbone of RNA, using phosphorothioates as a structural probe. This approach is generally applicable to any reaction involving RNA in which the precursor and reaction products can be separated. We have applied the technique to identity structural requirements in the group I intron from Tetrahymena thermophila for catalysis of hydrolysis at the 3' splice site; 44 phosphate oxygens are important in 3' splice site hydrolysis. These include four or five oxygens previously observed to be important in exon ligation. Although phosphate oxygens having a functional significance can be found throughout the intron, the strongest phosphorothioate effects are closely associated with positions in the highly conserved intron core, which are likely to be involved in tertiary interactions, substrate recognition and catalysis.  相似文献   

2.
非解朊栖热菌HG102耐热β-糖苷酶的结构与功能研究   总被引:3,自引:1,他引:3  
非解朊栖热菌HG10 2耐热 β-糖苷酶为 (β/α)8桶状结构 ,是具有水解功能和转糖苷功能的单体酶。该酶可以作为一个很好的模型来研究糖苷酶的反应机制、底物特异性和耐热的分子基础。根据对该酶的晶体结构解析和同家族酶的结构比较 ,推测Glu164和Glu338分别是质子供体和亲核基团两个活性位点 ;在α-螺旋N端第一位的脯氨酸和蛋白质外周的精氨酸是耐热机制的关键位点和关键氨基酸残基。为确定这些氨基酸残基的功能 ,通过基因定点突变的方法分别把Glu164、Glu338、Pro316、Pro356、Pro344和Arg325置换成Gln、Ala、Gly、Ala、Phe和Leu ,同时还对Pro316和Pro356进行了双置换。突变酶经过纯化得到电泳纯 ,用CD光谱进行了野生酶和突变酶的结构比较。通过突变酶的酶功能和酶学性质分析 ,结果表明Glu164和Glu338分别是质子供体和亲核基团 ,亲核基团的突变酶TnglyE338A可以合成混合型糖苷键寡糖类似物 ;在α-螺旋N端第一位的Pro316和Pro356以及在蛋白质外周形成离子键的Arg325均是对耐热性有贡献的关键氨基酸残基。  相似文献   

3.
Klenchin VA  Schmidt DM  Gerlt JA  Rayment I 《Biochemistry》2004,43(32):10370-10378
The members of the mechanistically diverse enolase superfamily share a bidomain structure formed from a (beta/alpha)7beta-barrel domain [a modified (beta/alpha)8- or TIM-barrel] and a capping domain formed from N- and C-terminal segments of the polypeptide. The active sites are located at the interface between the C-terminal ends of the beta-strands in the barrel domain and two flexible loops in the capping domain. Within this structure, the acid/base chemistry responsible for formation and stabilization of an enediolate intermediate derived from a carboxylate anion substrate and the processing of it to product is "hard-wired" by functional groups at the C-terminal ends of the beta-strands in the barrel domain; the identity of the substrate is determined in part by the identities of residues located at the end of the eighth beta-strand in the barrel domain and two mobile loops in the capping domain. On the basis of the identities of the acid/base functional groups at the ends of the beta-strands, the currently available structure-function relationships derived from functionally characterized members are often sufficient for "deciphering" the identity of the chemical reaction catalyzed by sequence-divergent members discovered in genome projects. However, insufficient structural information for liganded complexes for specifying the identity of the substrate is available. In this paper, the structure of the complex of L-Ala-L-Glu with the L-Ala-D/L-Glu epimerase from Bacillus subtilis is reported. As expected for the 1,1-proton transfer reaction catalyzed by this enzyme, the alpha-carbon of the substrate is located between Lys 162 and Lys 268 at the ends of the second and sixth beta-strands in the barrel domain. The alpha-ammonium group of the l-Ala moiety is hydrogen bonded to both Asp 321 and Asp 323 at the end of the eighth beta-strand, revealing a novel strategy for substrate recognition in the superfamily. The delta-carboxylate group of the Glu moiety is hydrogen bonded to Arg 24 in one of the flexible loops in the capping domain, thereby providing a structural explanation for the restricted substrate specificity of this epimerase [Schmidt, D. M., Hubbard, B. K., and Gerlt, J. A. (2001) Biochemistry 40, 15707-15715]. These studies provide important new information about the structural bases for substrate specificity in the enolase superfamily.  相似文献   

4.
The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic and basic amino acid side chains for use in proton shuttling. It is hypothesized that this active site template can be tailored to catalyze a wide range of chemical transformations through strategic positioning of acid/base residues among the active site stations. To test this hypothesis, the active site of one member of the 2-enoyl-CoA hydratase/isomerase family, 4-chlorobenzoyl-CoA dehalogenase, was altered by site-directed mutagenesis to include the two glutamate residues functioning in acid/base catalysis in a second family member, crotonase. Catalysis of the syn hydration of crotonyl-CoA, absent in the wild-type 4-chlorobenzoyl-CoA dehalogenase, was shown to occur with the structurally modified 4-chlorobenzoyl-CoA dehalogenase at kcat = 0.06 s-1 and Km = 50 microM.  相似文献   

5.
Conversion of arachidonic acid into the vicinal diol fatty acid 12R,13S-dihydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid using an acetone powder of the marine red alga, Gracilariopsis lemaneiformis, occurred via intermediate formation of 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid. Incubations of the linoleic acid-derived 13S- and 13R-hydroperoxy-9Z,11E-octadecadienoic acids led to the formation of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid and 13S,14S-dihydroxy-9Z,11E-octadecadienoic acid, respectively, whereas incubation of 9S-hydroperoxy-10E,12Z-octadecadienoic acid resulted in the formation of 8S,9R-dihydroxy-10E,12Z-octadecadienoic acid. Experiments with 18O2-labeled 13S-hydroperoxyoctadecadienoic acid demonstrated that the oxygens of the two hydroxyl groups of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid originated in the hydroperoxy group of the substrate. Furthermore, experiments with mixtures of unlabeled and 18O2-labeled 13S-hydroperoxyoctadecadienoic acid showed that conversion into 13R,14S-dihydroxyoctadecadienoic acid occurred by a reaction involving an intramolecular hydroxylation at C-14 by the distal hydroperoxide oxygen. The existence of a hydroperoxide isomerase in G. lemaneiformis which catalyzes the conversion of fatty acid hydroperoxides into vicinal diol fatty acids is postulated.  相似文献   

6.
Phenylpyruvate tautomerase (PPT) has been studied periodically since its activity was first described over forty years ago. In the last two years, the mechanism of PPT has been investigated more extensively because of the discovery that PPT is the same protein as the immunoregulatory cytokine known as macrophage migration inhibitory factor (MIF). The mechanism of PPT is likely to involve general base-general acid catalysis. While several lines of evidence implicate Pro-1 as the general base, the identity of the general acid remains unknown. Crystal structures of MIF with the competitive inhibitor (E)-2-fluoro-p-hydroxycinnamate bound in the active site and that of the protein complexed with the enol form of a substrate, (p-hydroxyphenyl)pyruvate, suggest that Tyr-95 is the only candidate in the vicinity that can function as a general acid catalyst. Although Tyr-95 is nearby the bound inhibitor and substrate, it is not within hydrogen bonding distance of either ligand. In this study, Tyr-95 was mutated to phenylalanine, and the kinetic and structural properties of the Y95F mutant were determined. This alteration produces a fully active enzyme, which shows no significant structural changes in the active site. The results indicate that Tyr-95 does not function as the general acid catalyst in the reaction catalyzed by wild-type PPT. The mechanism of PPT was studied further by constructing and characterizing the kinetic properties of two mutants of Pro-1 (P1G and P1A) and one mutant of Asn-97 (N97A). The mutation of Asn-97, a residue implicated in the binding of the phenolic hydroxy group of the keto and enol isomers of (p-hydroxyphenyl)pyruvate and of (E)-2-fluoro-p-hydroxycinnamate affects only the binding affinity of the inhibitor. However, the mutations of Pro-1 have a profound effect on the values of k(cat) and k(cat)/K(m) and clearly show that Pro-1 is a critical residue in the reaction. The results are discussed in terms of a mechanism in which Pro-1 functions as both the general acid and the general base catalyst.  相似文献   

7.
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.  相似文献   

8.
The metabolic pathway by which 4-chlorobenzoate is degraded to 4-hydroxybenzoate in the soil-dwelling microbe Pseudomonas sp. strain CBS-3 consists of three enzymes including 4-hydroxybenzoyl-CoA thioesterase. The structure of the unbound form of this thioesterase has been shown to contain the so-called "hot dog" fold with a large helix packed against a five-stranded anti-parallel beta-sheet. To address the manner in which the enzyme accommodates the substrate within the active site, two inhibitors have been synthesized, namely 4-hydroxyphenacyl-CoA and 4-hydroxybenzyl-CoA. Here we describe the structural analyses of the enzyme complexed with these two inhibitors determined and refined to 1.5 and 1.8 A resolution, respectively. These studies indicate that only one protein side chain, Ser(91), participates directly in ligand binding. All of the other interactions between the protein and the inhibitors are mediated through backbone peptidic NH groups, carbonyl oxygens, and/or solvents. The structures of the enzyme-inhibitor complexes suggest that both a hydrogen bond and the positive end of a helix dipole moment serve to polarize the electrons away from the carbonyl carbon of the acyl group, thereby making it more susceptible to nucleophilic attack. Additionally, these studies demonstrate that the carboxylate group of Asp(17) is approximately 3.2 A from the carbonyl carbon of the acyl group. To address the role of Asp(17), the structure of the site-directed mutant protein D17N with bound substrate has also been determined. Taken together, these investigations suggest that the reaction mechanism may proceed through an acyl enzyme intermediate.  相似文献   

9.
Triose phosphate isomerase from chicken muscle reacts stoicheiometrically with the active-site-directed irreversible inhibitor bromohydroxyacetone phosphate with concomitant loss of all catalytic activity. The primary site of attachment has been shown to be a unique glutamic acid residue in the sequence Ala-Tyr-Glu-Pro-Val-Trp. Unless the inhibitor-enzyme bond is stabilized by reduction of the C-2 carbonyl group with borohydride, the phosphate group is lost and the label migrates to the adjacent tyrosine residue. It is suggested that the gamma-carboxylate group of the glutamic acid residue may be the base responsible for primary proton abstraction from substrate in the catalysis. The failure of this reagent specifically to inactivate either muscle or yeast aldolase, and the use of the reagent in preparing isomerase-free glycolytic enzymes, is discussed.  相似文献   

10.
Electrophilic catalysis by histidine-95 in triosephosphate isomerase has been probed by using Fourier transform infrared spectroscopy and X-ray crystallography. The carbonyl stretching frequency of dihydroxyacetone phosphate bound to the wild-type enzyme is known to be 19 cm-1 lower (at 1713 cm-1) than that of dihydroxyacetone phosphate free in solution (at 1732 cm-1), and this decrease in stretching frequency has been ascribed to an enzymic electrophile that polarizes the substrate carbonyl group toward the transition state for the enolization. Infrared spectra of substrate bound to two site-directed mutants of yeast triosephosphate isomerase in which histidine-95 has been changed to glutamine or to asparagine show unperturbed carbonyl stretching frequencies between 1732 and 1742 cm-1. The lack of carbonyl polarization when histidine-95 is removed suggests that histidine-95 is indeed the catalytic electrophile, at least for dihydroxyacetone phosphate. Kinetic studies of the glutamine mutant (H95Q) have shown that the enzyme follows a subtly different mechanism of proton transfers involving only a single acid-base catalytic group. These findings suggest an additional role for histidine-95 as a general acid-base catalyst in the wild-type enzyme. The X-ray crystal structure of the H95Q mutant with an intermediate analogue, phosphoglycolohydroxamate, bound at the active site has been solved to 2.8-A resolution, and this structure clearly implicates glutamate-165, the catalytic base in the wild-type isomerase, as the sole acid-base catalyst for the mutant enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
4-Hydroxybenzoyl-coenzyme A (4-HBA-CoA) thioesterase catalyzes the hydrolysis of 4-HBA-CoA to 4-hydroxybenzoate and CoA. X-ray crystallographic analysis of the liganded enzyme has shown that the benzoyl thioester and pantetheine moieties of the substrate ligand are bound in a narrow crevice while the nucleotide moiety rests on the protein surface (Thoden, J. B., Holden, H. M., Zhuang, Z. and Dunaway-Mariano, D. (2002) X-ray Crystallographic Analyses of Inhibitor and Substrate Complexes of Wild-type and Mutant 4-Hydroxybenzoyl-CoA Thioesterase, J. Biol. Chem., in press). Asp17 is positioned in the crevice, close to the substrate thioester C=O, which in turn interacts with the positive pole of an alpha-helix macrodipole. In this paper we report the results from spectral, mutagenesis, and kinetic studies which show (1) that substrate activation involves restricted thioester C=O conformational freedom and a modest enhancement of C=O bond polarization, (2) that the nucleotide unit of the substrate is bound through interaction with the protein surface, and (3) that Asp17 contributes a rate factor of 10(4), consistent with its proposed role of general base or nucleophile.  相似文献   

12.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

13.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria.  相似文献   

14.
The amino acid sequence of the P2 protein of peripheral myelin was analyzed with regard to regions of probable alpha-helix, beta-structure, beta-turn, and unordered conformation by means of several algorithms commonly used to predict secondary structure in proteins. Because of the high beta-sheet content and virtual absence of alpha-helix shown by the circular dichroic spectra of the protein, a bias was introduced into the algorithms to favor the beta-structure over the alpha-helical conformation. In order to define those beta-sheet residues that could lie on the external hydrophilic surface of the protein and those that could lie in its hydrophobic interior, the predicted beta-strands were examined for charged and uncharged amino acids located at alternating positions in the sequence. The sequential beta-strands in the predicted secondary structure were then ordered into beta-sheets and aligned according to generally accepted tertiary folding principles and certain chemical properties peculiar to the P2 protein. The general model of the P2 protein that emerged was a "Greek key" beta-barrel, consisting of eight antiparallel beta-strands with a two-stranded ribbon of antiparallel beta-structure emerging from one end. The model has an uncharged, hydrophobic core and a highly hydrophilic surface. The two Cys residues, which form a disulfide, occur in a loop connecting two adjacent antiparallel strands. Two hydrophilic loops, each containing a cluster of acidic residues and a single Phe, protrude from one end of the molecule. The general model is consistent with many of the properties of the actual protein, including the relatively weak nature of its association with myelin lipids and the positions of amino acid substitutions. Alternative beta-strand orderings yield three specific models having different interstrand connections across the barrel ends.  相似文献   

15.
DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and prevents their aggregation in vitro. Citrate synthase reactivation experiments in the presence of DsbG suggest that DsbG binds with high affinity to early unstructured protein folding intermediates. DsbG is one of the first periplasmic proteins shown to have general chaperone activity. This ability to chaperone protein folding is likely to increase the effectiveness of DsbG as a protein disulfide isomerase.  相似文献   

16.
Garscha U  Oliw EH 《FEBS letters》2008,582(23-24):3547-3551
7,8-Linoleate diol synthase (7,8-LDS) of the take-all fungus and cyclooxygenases can be aligned with approximately 24% amino acid identity and both form a tyrosyl radical during catalysis. 7,8-LDS was expressed in insect cells with native 8R-dioxygenase and hydroperoxide isomerase activities. We studied conserved residues of 7,8-LDS, which participate in cyclooxygenases for heme binding (His residues), hydrogen abstraction (Tyr), positioning (Tyr, Trp), and ionic binding of substrates (Arg). Site-directed mutagenesis abolished 8R-dioxygenase activities with exception of the putative distal histidine (His203Gln) and a tyrosine residue important for hydrogen bonding and substrate positioning (Tyr329Phe). The results demonstrate structural similarities between 7,8-LDS and cyclooxygenases.  相似文献   

17.
Products of linoleic hydroperoxide-decomposing enzyme of alfalfa seed   总被引:2,自引:0,他引:2  
Alfalfa seeds and seedlings contain an enzyme that catalyzes a reaction with the 13- and 9-hydroperoxides of linoleic acid to form 13-hydroxy-10-oxo-trans-octadecenoic acid and 9-hydroxy-12-oxo-trans-10-octadecenoic acid, respectively. When commercial lipoxygenase is used to generate the hydroperoxides, the above acids appear in about 2:1 proportions, respectively. The products of the action of the enzyme on the hydroperoxides were stabilized for analysis by reduction with H(2) and LiAIH(4). Trimethylsilyl derivatives of reduced products were analyzed by combined gas-liquid chromatography-mass spectrometry. Specific deuterium labeling permitted definite location of the oxo functions. (18)O(2) labeling experiments showed that the oxygens of both the oxo and the hydroxyl functions were derived from the hydroperoxide. Retention of both oxygens suggests that the reaction proceeds through a cyclic epiperoxide followed by a ketohydroxy-forming rearrangement. No products of hydroperoxide isomerase were found in reactions catalyzed by the crude enzyme from alfalfa seeds.  相似文献   

18.
The hPar14 protein is a peptidyl prolyl cis/trans isomerase and is a human parvulin homologue. The hPar14 protein shows about 30 % sequence identity with the other human parvulin homologue, hPin1. Here, the solution structure of hPar14 was determined by nuclear magnetic resonance spectroscopy. The N-terminal 35 residues preceding the peptidyl prolyl isomerase domain of hPar14 are unstructured, whereas hPin1 possesses the WW domain at its N terminus. The fold of residues 36-131 of hPar14, which comprises a four-stranded beta-sheet and three alpha-helices, is superimposable onto that of the peptidyl prolyl isomerase domain of hPin1. To investigate the interaction of hPar14 with a substrate, the backbone chemical-shift changes of hPar14 were monitored during titration with a tetra peptide. Met90, Val91, and Phe94 around the N terminus of alpha3 showed large chemical-shift changes. These residues form a hydrophobic patch on the molecular surface of hPar14. Two of these residues are conserved and have been shown to interact with the proline residue of the substrate in hPin1. On the other hand, hPar14 lacks the hPin1 positively charged residues (Lys63, Arg68, and Arg69), which determine the substrate specificity of hPin1 by interacting with phosphorylated Ser or Thr preceding the substrate Pro, and exhibits a different structure in the corresponding region. Therefore, the mechanism determining the substrate specificity seems to be different between hPar14 and hPin1.  相似文献   

19.
Williams L  Nguyen T  Li Y  Porter TN  Raushel FM 《Biochemistry》2006,45(24):7453-7462
Uronate isomerase, a member of the amidohydrolase superfamily, catalyzes the isomerization of D-glucuronate and D-fructuronate. During the interconversion of substrate and product the hydrogen at C2 of D-glucuronate is transferred to the pro-R position at C1 of the product, D-fructuronate. The exchange of the transferred hydrogen with solvent deuterium occurs at a rate that is 4 orders of magnitude slower than the interconversion of substrate and product. The enzyme catalyzes the elimination of fluoride from 3-deoxy-3-fluoro-D-glucuronate. These results have been interpreted to suggest a chemical reaction mechanism in which an active site base abstracts the proton from C2 of D-glucuronate to form a cis-enediol intermediate. The conjugate acid then transfers this proton to C1 of the cis-enediol intermediate to form D-fructuronate. The loss of fluoride from 3-deoxy-3-fluoro-D-glucuronate is consistent with a stabilized carbanion at C2 of the substrate during substrate turnover. The slow exchange of the transferred hydrogen with solvent water is consistent with a shielded conjugate acid after abstraction of the proton from either D-glucuronate or D-fructuronate during the isomerization reaction. This conclusion is supported by the competitive inhibition of the enzymatic reaction by D-arabinaric acid and the monohydroxamate derivative with Ki values of 13 and 670 nM, respectively. There is no evidence to support a hydride transfer mechanism for uronate isomerase. The wild type enzyme was found to contain 1 equiv of zinc per subunit. The divalent cation could be removed by dialysis against the metal chelator, dipicolinate. However, the apoenzyme has the same catalytic activity as the Zn-substituted enzyme and thus the divalent metal ion is not required for enzymatic activity. This is the only documented example of a member in the amidohydrolase superfamily that does not require one or two divalent cations for enzymatic activity.  相似文献   

20.
The essential catalytic base at the active site of the glycolytic enzyme triosephosphate isomerase is the carboxylate group of Glu-165, which directly abstracts either the 1-pro-R proton of dihydroxyacetone phosphate or the 2-proton of (R)-glyceraldehyde 3-phosphate to yield the cis-enediol intermediate. Using the methods of site-directed mutagenesis, we have replaced Glu-165 by Asp. The three enzymes chicken isomerase from chicken muscle, wild-type chicken isomerase expressed in Escherichia coli, and mutant (Glu-165 to Asp) chicken isomerase expressed in E. coli have each been purified to homogeneity. The specific catalytic activities of the two wild-type isomerases are identical, while the specific activity of the mutant enzyme is reduced by a factor of about 1000. The observed kinetic differences do not derive from a change in mechanism in which the aspartate of the mutant enzyme acts as a general base through an intervening water molecule, because the D2O solvent isotope effects and the stoichiometries of inactivation with bromohydroxyacetone phosphate are identical for the wild-type and mutant enzymes. Using the range of isotopic experiments that were used to delineate the free-energy profile of the wild-type chicken enzyme, we here derive the complete energetics of the reaction catalyzed by the mutant protein. Comparison of the reaction energetics for the wild-type and mutant isomerases shows that only the free energies of the transition states for the two enolization steps have been seriously affected. Each of the proton abstraction steps is about 1000-fold slower in the mutant enzyme. Evidently, the excision of a methylene group from the side chain of the essential glutamate has little effect on the free energies of the intermediate states but dramatically reduces the stabilities of the transition states for the chemical steps in the catalyzed reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号