首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing anionic and non-ionic cellulose ethers, differing in type of substituent and degree of substitution, as substrates, the pH-profile of enzyme activity and the parameter Km and V max of the MICHAELIS -MENTEN kinetics have been determined with Penicillium citrioviride cellulase in an homogeneous system. Within rather wide limits, a linear correlation was found between the DS of the substrate and Km or Vmax, respectively. Also the pH-profile was found to depend on DS mainly, being bimodal at higher DS. On the other hand, no significant difference was observed between anionic and non-ionic cellulose ethers of about the same DS with regard to the parameters determined. It is assumed, that substrate-enzyme interaction is governed mainly by the length of non-derivatized chain sequences mainly and not by Coulomb interactions.  相似文献   

2.
Pullulan acetate (AcPL) with various degree of substitution (DS: 1.0–3.0) was synthesized by the reaction of pullulan with acetyl chloride in the presence of pyridine. The product was characterized by gel permeation chromatography (GPC), infra-red (IR) and 1H NMR spectroscopy. The weight average molecular weights of the products did not decrease less than 190,000 (GPC) in the acetylation reaction. Thermogravimetric analysis (TGA) revealed that AcPL has a higher decomposition temperature (306–363 °C) than unmodified pullulan (295 °C). Differential scanning calorimetry analysis (DSC) revealed that all the AcPLs exhibit a clear Tg, which decreased with increasing DS value in the range of DS 1.0–2.4. The AcPL with DS 2.4 showed the lowest Tg (153 °C), and the AcPL with DS 3.0 had a slightly higher Tg (163 °C). Tensile modulus of AcPL films was comparable to that of a popular cellulose acetate film. The biodegration rate of AcPL decreased with increasing degree of acetylation. The AcPL with DS 3.0 was found to form a semi-clear gel in organic solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and 1,4-dioxane.  相似文献   

3.
Using the esterification of bacterial cellulose (BC), we have synthesized Benzoylated bacterial cellulose (BBC). The molecular structure of the BBC was characterized by means of Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR). The BBC is found to display thermotropic liquid crystalline feature determined with differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide-angle X-ray diffraction (WAXD). Here, we demonstrate that it is possible to obtain the BBC with degree of substitution (DS) from 0.88 to 2.46 by applying the different molar ratio of benzoyl chloride to the anhydrous glucose unit (AGU). The glass transition temperatures (Tg) of the liquid crystalline phases lie between 281.2 and 281.8 °C and the isotropic melt transition temperatures (Ti) vary from 341.6 to 362.8 °C, depending on the DS.  相似文献   

4.
We report the acetylation of celluloses from sisal (untreated and alkali treated) and cotton linters (alkali treated), under homogeneous solution conditions, using DMAc/LiCl as solvent system. Our target was to evaluate the effects of cellulose dissolution and reactions conditions on the product properties. The products were characterized in terms of degree of substitution (DS) by 1H NMR, and molar weight distribution (MWD) by size exclusion chromatography. Changes in the DS of the products were correlated with reaction conditions and solution properties. It was found that the dissolution of celluloses and degree of substitution of cellulose derivatives depends on a fine adjustment of the dissolution/derivatization conditions, as well as on the origin (sisal or linters) of celluloses.  相似文献   

5.
As part of an effort to synthesize a dendronized cellulose, we have synthesized a trifunctional aminoamide derivative, which is the first generation of a dendron substituent. We anticipate that a dendronized cellulose would have applications in complexing metals and could be employed as an adjuvant for drugs. The trifunctional aminoamide substituent was introduced by coupling di-tert-butyl 4-[2-(tert-butoxycarbonyl)ethyl]-4-aminoheptanedicarboxylate, BA, directly to a (carboxymethyl)cellulose (CMC) backbone and converting the tert-butyl ester peripheral groups to aminoamide substituents by use of N,N-dimethyl-1,3-propanediamine. Confirmation of the proposed chemical structure of the intermediates as well as the water-soluble aminoamide derivative (CMCBADMPDA) was obtained by Fourier transform infrared (FT-IR) and NMR spectroscopy. The degree of substitution (DS) was determined to be 0.40 +/- 0.01 by thermogravimetric analysis. Typical weight average molecular weight (M(w)), molecular weight distribution (MWD), and molecular size of the dendronized polymers were found to be 97,000, 1.7, and 17.4 nm for derivatives of a CMC with corresponding M(w), MWD, and root-mean-square radius (RMS) of 230 000, 3.2, and 24 nm. A differential refractive index (dn/dc) for the aminoamide derivative measured in aqueous 0.40 N ammonium acetate-0.01 N NaOH was found to be 0.1473. The intrinsic viscosity of the dendronized cellulose decreased significantly when compared with that of CMC, that is, 0.40 dL/g relative to 5.60 dL/g. The hydrophobicity of the CMCBADMPDA microenvironment in aqueous solution was probed by evaluating the relative fluorescence intensities of the I(373)/I(384) pyrene bands; a slightly more hydrophobic environment was observed.  相似文献   

6.
The quantitation of carboxymethyl cellulose (CMC) by chemical analysis, with either manual or automated -cysteine-sulphuric acid assays, was shown to be affected by the degree of substitution (DS) of the CMC; a decrease in response to the -cysteine-sulphuric acid assay with increasing DS was observed. However, the use of a mathematical model, which corrected the CMC weight to cellulose content, combined with a prehydrolysis step for removing the carboxymethyl groups prior to either manual or post-chromatographic Biogel® P6 column automated -cysteine-sulphuric acid assays eliminated the interference of the DS in the -cysteine assay.  相似文献   

7.
Particulate β-d-glucan was isolated from baker's yeast using autolysis and delipidization of the cells, followed by alkaline and acid treatment. The residual water-insoluble glucan termed cerevan has a β-(1→ 3)-linked backbone with β-(1 → 6)-linked short side chains. In order to achieve water solubility of the glucan, various derivatives were prepared (car☐ymethyl-, car☐yethyl-, hydroxyethyl-, sulfoethyl-), and the β-glucan was oxidized to glucuronoglucan. Their solubility, degree of substitution (DS), and molecular weight distribution (Mw) were compared. The immunomodulatory activity of these preparations was investigated in mitogenic and co-mitogenic tests on rat thymocytes. Cerevan showed higher stimulation indices compared with the known immunomodulator zymosan. Of the water-soluble derivatives, sulfoethylglucan was found to be the most active. Of the car☐ymethyl derivatives of various DS, the preparation with DS=0.75 exhibited the highest activity. Water-soluble car☐ymethyl preparations with DS > 1.0 and low-molecular-weight glucuronoglucan were inactive.  相似文献   

8.
The main purpose of this study is to explore the sulfation of xylan to produce an anionic flocculant, sulfated xylan, for removing ethyl violet dye from simulated dye solutions. In this work, xylan was sulfated with chlorosulfonic acid in N, N‐dimethylformamide solvent and the reaction conditions were optimized using a response surface methodology. It was observed that the maximum degree of substitution of 1.1 was obtained for sulfated xylan under the conditions of 3.71 chlorosulfonic acid/xylan molar ratio, 70°C and 7 h reaction time. The resulting sulfated xylan had a charge density of ?3.12 mmol/g and molecular weight (Mw) of 22,300 g/mol. Furthermore, elemental and thermogravimetric analyses, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance (1H‐NMR) confirmed the sulfation of xylan. The application of sulfated xylan as a flocculant for decolorizing the simulated ethyl violet dye wastewater was studied. The results indicated that 97% of dye was removed from 50 mg/L dye solution at the sulfated concentration of 175 mg/L and pH 9, but unmodified xylan was ineffective in flocculating and removing dye segments. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:529–536, 2018  相似文献   

9.
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.  相似文献   

10.
This study investigated the influence of the degree of polymerization (DP) of cellulose materials (microcrystalline cellulose [MCC]) on some powder properties and the compression behavior of these materials. The DP was determined by measurements of viscosity (H). The weight average of molecular weight and the weight average of the different DPs were investigated after MCC was modified to cellulose tricarbanilate by light scattering measurements. The DP showed a remarkable influence on the physicochemical properties of the cellulose materials and, consequently, on the behavior of these materials during compression. MCC types with a high DP value showed greater water absorption than the types with a low DP value. No relevant relationship between the crystallinity index and the DP could be observed. DP 190 showed lower compactibility and compressibility parameters than DP 244 and 299. No significant differences could be observed between DP 244 and 299 when the same particle size fraction was compressed. Furthermore, the compressibility was increased by increasing the DP.  相似文献   

11.
裂褶多糖的羧甲基化   总被引:5,自引:1,他引:4  
采用氢氧化钠-氯乙酸反应体系,以异丙醇为溶剂,利用L9(34)正交试验合成mg级的不同取代度(DS)的羧甲基化裂褶多糖。研究表明试验条件下各因素对DS值影响由大到小的顺序为:氯乙酸/裂褶多糖(g/g)>氢氧化钠/裂褶多糖(g/g)>反应时间>反应温度。其红外光谱在1600 cm-1出现-COO-特征吸收;其紫外光谱在200~300 nm没有明显的吸收峰。对其13C NMR化学位移进行了归属。  相似文献   

12.
Some reactional parameters as mol ratio (salicylaldehyde:free amino groups), reaction time and temperature were investigated in order to improve the substitution degree (DS) in the preparation of biopolymeric Schiff bases from chitosan. In this case, the reaction of chitosan and salicylaldehyde was used as a probe system in order to produce the Schiff base. The use of 50% (mol/mol) salicylaldehyde excess, reaction time of 18 h and temperature of 55 °C permitted to obtain a DS of 60% without evidences of hydrolysis of the biopolymeric matrix or changes in its acetylation degree.  相似文献   

13.
一步法制备羧甲基茯苓多糖的工艺研究   总被引:4,自引:0,他引:4  
本实验对在有机溶剂中一步法半合成羧甲基茯苓多糖的合成条件进行了研究。结果表明,乙醇是作为羧甲基化反应的合适介质。反应温度提高能加快反应速度;反应时间延长能提高取代度。茯苓多糖葡萄糖当量与氢氧化钠和一氯乙酸的摩尔比调配适当,能减少副产物羟乙酸钠的产生。  相似文献   

14.
A simple chemical modification route to confer high hydrophobicity to crystalline cellulose surface was demonstrated using tunicin whiskers as model material. An alkyenyl succinic anhydride (ASA) aqueous emulsion was mixed with cellulose suspension, freeze-dried, and heated to 105 degrees C. The bulk degree of substitution (DS) was evaluated by FT-IR spectrometry, elemental analysis, and weight gain. The surface DS was quantified by X-ray photoelectron spectroscopy. The surface-acylated whiskers retained their morphological and crystalline integrity, but due to their surface acylation, they are readily dispersible in solvents of low polarity such as 1,4-dioxane. These whiskers can also be well dispersed in polystyrene to form a nanocomposite.  相似文献   

15.
The heteroxylan from the hybrid Paulownia elongata/Paulownia fortunei is an O-acetyl-(4-O-methylglucurono)xylan with an acetylation degree (DS) of 0.59 and a molecular weight (M(w)) of 29 kDa. The heteroxylan backbone is composed by (1-->4)-linked beta-d-xylopyranosyl units (Xylp) partially ramified with terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl (MeGlcpA) and a small proportion of alpha-D-glucuronosyl (GlcpA) residues in a molar ratio of Xylp:(MeGlcpA+GlcpA) of 20:1. Roughly half of the beta-D-xylopyranosyl units in the backbone are acetylated: 3-O-acetylated (22 mol %), 2-O-acetylated (23 mol %) or 2,3-di-O-acetylated (7 mol %). ESI-MS and MALDI-MS studies of partially hydrolyzed heteroxylan revealed a random distribution of O-Ac and MeGlcpA within the backbone. However, the frequency of substitution with O-Ac along the backbone is not uniform and the molecular regions that did not contain MeGlcpA substituents possessed an acetylation degree significantly lower than the average DS of the xylan.  相似文献   

16.
Five chemically modified forms of cellulose were prepared, characterized, and tested as substrates for a homogeneous glucanohydrolase from A. niger. The relative order of reactivity at pH 4.0 was DEAE = PEI > benzyl DEAE > cellulose > P > CM.The following abbreviations are used throughout the article: (RBB) Remazol brilliant blue R; (DEAE) diethylamino ethyl; (PEI) polethyleneimine; (CM) carboxymenthyl; (P) phospho; (DS) degree of RBB dye substitution of cellulose, in mol dye/100 glucose. This indicates that positively charged cellulose substrates are more susceptible to hydrolysis by the cellulase. This observation strengthens an earlier proposal that caroxyl groups on the enzyme are involved in substrate binding and catalytic action. Chemical modification is suggested as a method to increase the rate of enzymatic hydrolysis of cellulose, a process now in the commercial development stage.  相似文献   

17.
The dissolution kinetics of cellulose in sodium hydroxide in the presence and absence of urea at low temperature was studied. High molecular weight cotton linter with degree of polymerization of 850 was used for dissolution study. The cotton linter was separated from the dissolution slurry at different dissolution times, and the change of the crystal structure of cotton linter was characterized by Powder X-Ray Diffraction. The rate of decrystallization of cellulose was obtained and the activation energy for cellulose decrystallization in sodium hydroxide solution was derived using Eyring equation. The effect of urea additive was discussed.  相似文献   

18.
Synthesis of chitosan sulfates with low molecular weight (Mv 9000–35,000 Da) was carried out by sulfation of low molecular weight chitosan (Mv 10,000–50,000 Da). The oleum was used as sulfating agent and dimethylfornamide as medium. The chitosans were prepared by enzymatic and acidic hydrolysis of initial high molecular weight chitosan as well as by extrusion solid-state deacetylation of chitin. As was shown by FT-IR and NMR-methods and elemental analysis, the sulfation occurred at C-6 and C-3 positions and substitution degree is 1.10–1.63. The molecular weight sulfated chitosan was determined by viscometric method and the Mark–Houwink equation [η]=10−5 4.97 M0.77. Study of anticoagulant activity showed that chitosan sulfates with lowered molecular weight demonstrated a regular increase of anti-Xa activity like heparins.  相似文献   

19.
Dextrans and pullulans of different molar masses in the range of 10(4)-10(5) g/mol were sulphated via a SO3-pyridine complex. The degree of substitution achieved was DS = 2.4 and DS = 1.4 for dextran sulphate and DS = 2.0 and DS = 1.4 for pullulan sulphate, respectively. Confirmation of sulphation was given by FTIR spectroscopy. Asymmetrical S=O and symmetrical C-O-S stretching vibrations were detected at 1260 and 820 cm(-1). Reactivity of the polysaccharide C-atoms was determined by 13C NMR spectroscopy: For dextran this was C-3 > C-2 > C-4, while for pullulan it was C-6 > C-3 > C-2 > C-4.  相似文献   

20.
Yam (Dioscorea esculenta) starch was modified by carboxymethylation. The effect of reaction parameters, amount of sodium hydroxide (NaOH), amount of sodium monochloroacetate (SMCA), and reaction time on the degree of substitution (DS) of carboxymethyl yam starch (CMS), was studied using the Box–Behnken experimental design. Physicochemical and potency to be a tablet disintegrant of CMS were evaluated. CMS with DS in the range of 0.08–0.19 were obtained. The results from regression analysis indicated that the most important factor in controlling DS was the amount of NaOH followed by SMCA content and reaction time. However, high concentration of NaOH and SMCA lowered the DS. The optimal conditions to achieve the highest DS (0.19) were found to be at molar ratios of NaOH and SMCA to anhydroglucose unit of 1.80 and 2.35, respectively, and with the reaction time of 4.8 h. The swelling power and viscosity of CMS increased with an increase in the degree of modification. CMS showed satisfying tablet disintegrant properties. The tablets containing 1.0–4.0 % CMS disintegrated faster than 5 min. Hence carboxymethyl yam starch can be used as an excellent tablet disintegrant in low concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号