首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because undirected edges disappear in the limit of a large population. In a series of simulations, we show that epidemic percolation networks accurately predict the mean outbreak size and probability and final size of an epidemic for a variety of epidemic models in homogeneous and heterogeneous populations. Finally, we show that epidemic percolation networks can be used to re-derive classical results from several different areas of infectious disease epidemiology. In an Appendix, we show that an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model in a closed population and prove that the distribution of outbreak sizes given the infection of any given node in the SIR model is identical to the distribution of its out-component sizes in the corresponding probability space of epidemic percolation networks. We conclude that the theory of percolation on semi-directed networks provides a very general framework for the analysis of stochastic SIR models in closed populations.  相似文献   

2.
Multi-species compartment epidemic models, such as the multi-species susceptible–infectious–recovered (SIR) model, are extensions of the classic SIR models, which are used to explore the transient dynamics of pathogens that infect multiple hosts in a large population. In this article, we propose a dynamical Bayesian hierarchical SIR (HSIR) model, to capture the stochastic or random nature of an epidemic process in a multi-species SIR (with recovered becoming susceptible again) dynamical setting, under hidden mass balance constraints. We call this a Bayesian hierarchical multi-species SIR (MSIRB) model. Different from a classic multi-species SIR model (which we call MSIRC), our approach imposes mass balance on the underlying true counts rather than, improperly, on the noisy observations. Moreover, the MSIRB model can capture the discrete nature of, as well as uncertainties in, the epidemic process.  相似文献   

3.
4.
The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.  相似文献   

5.
Modelling contagious diseases needs to include a mechanistic knowledge about contacts between hosts and pathogens as specific as possible, e.g., by incorporating in the model information about social networks through which the disease spreads. The unknown part concerning the contact mechanism can be modelled using a stochastic approach. For that purpose, we revisit SIR models by introducing first a microscopic stochastic version of the contacts between individuals of different populations (namely Susceptible, Infective and Recovering), then by adding a random perturbation in the vicinity of the endemic fixed point of the SIR model and eventually by introducing the definition of various types of random social networks. We propose as example of application to contagious diseases the HIV, and we show that a micro-simulation of individual based modelling (IBM) type can reproduce the current stable incidence of the HIV epidemic in a population of HIV-positive men having sex with men (MSM).  相似文献   

6.
Gravity models have a long history of use in describing and forecasting the movements of people as well as goods and services, making them a natural basis for disease transmission rates over distance. In agent-based micro-simulations, gravity models can be directly used to represent movement of individuals and hence disease. In this paper, we consider a range of gravity models as fits to movement data from the UK and the US. We examine the ability of synthetic networks generated from fitted models to match those from the data in terms of epidemic behaviour; in particular, times to first infection. For both datasets, best fits are obtained with a two-piece ‘matched’ power law distance distribution. Epidemics on synthetic UK networks match well those on data networks across all but the smallest nodes for a range of aggregation levels. We derive an expression for time to infection between nodes in terms of epidemiological and network parameters which illuminates the influence of network clustering in spread across networks and suggests an approximate relationship between the log-likelihood deviance of model fit and the match times to infection between synthetic and data networks. On synthetic US networks, the match in epidemic behaviour is initially poor and sensitive to the initially infected node. Analysis of times to infection indicates a failure of models to capture infrequent long-range contact between large nodes. An assortative model based on node population size captures this heterogeneity, considerably improving the epidemiological match between synthetic and data networks.  相似文献   

7.
In the year 2020, there were 105 different statutory insurance companies in Germany with heterogeneous regional coverage. Obtaining data from all insurance companies is challenging, so that it is likely that projects will have to rely on data not covering the whole population. Consequently, the study of epidemic spread in hospital referral networks using data-driven models may be biased. We studied this bias using data from three German regional insurance companies covering four federal states: AOK (historically “general local health insurance company”, but currently only the abbreviation is used) Lower Saxony (in Federal State of Lower Saxony), AOK Bavaria (in Bavaria), and AOK PLUS (in Thuringia and Saxony). To understand how incomplete data influence network characteristics and related epidemic simulations, we created sampled datasets by randomly dropping a proportion of patients from the full datasets and replacing them with random copies of the remaining patients to obtain scale-up datasets to the original size. For the sampled and scale-up datasets, we calculated several commonly used network measures, and compared them to those derived from the original data. We found that the network measures (degree, strength and closeness) were rather sensitive to incompleteness. Infection prevalence as an outcome from the applied susceptible-infectious-susceptible (SIS) model was fairly robust against incompleteness. At incompleteness levels as high as 90% of the original datasets the prevalence estimation bias was below 5% in scale-up datasets. Consequently, a coverage as low as 10% of the local population of the federal state population was sufficient to maintain the relative bias in prevalence below 10% for a wide range of transmission parameters as encountered in clinical settings. Our findings are reassuring that despite incomplete coverage of the population, German health insurance data can be used to study effects of patient traffic between institutions on the spread of pathogens within healthcare networks.  相似文献   

8.
Comparisons between mass-action or “random” network models and empirical networks have produced mixed results. Here we seek to discover whether a simulated disease spread through randomly constructed networks can be coerced to model the spread in empirical networks by altering a single disease parameter — the probability of infection. A stochastic model for disease spread through herds of cattle is utilised to model the passage of an SEIR (susceptible–latent–infected–resistant) through five networks. The first network is an empirical network of recorded contacts, from four datasets available, and the other four networks are constructed from randomly distributed contacts based on increasing amounts of information from the recorded network. A numerical study on adjusting the value of the probability of infection was conducted for the four random network models. We found that relative percentage reductions in the probability of infection, between 5.6% and 39.4% in the random network models, produced results that most closely mirrored the results from the empirical contact networks. In all cases tested, to reduce the differences between the two models, required a reduction in the probability of infection in the random network.  相似文献   

9.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

10.
An effective degree approach to modeling the spread of infectious diseases on a network is introduced and applied to a disease that confers no immunity (a Susceptible-Infectious-Susceptible model, abbreviated as SIS) and to a disease that confers permanent immunity (a Susceptible-Infectious-Recovered model, abbreviated as SIR). Each model is formulated as a large system of ordinary differential equations that keeps track of the number of susceptible and infectious neighbors of an individual. From numerical simulations, these effective degree models are found to be in excellent agreement with the corresponding stochastic processes of the network on a random graph, in that they capture the initial exponential growth rates, the endemic equilibrium of an invading disease for the SIS model, and the epidemic peak for the SIR model. For each of these effective degree models, a formula for the disease threshold condition is derived. The threshold parameter for the SIS model is shown to be larger than that derived from percolation theory for a model with the same disease and network parameters, and consequently a disease may be able to invade with lower transmission than predicted by percolation theory. For the SIR model, the threshold condition is equal to that predicted by percolation theory. Thus unlike the classical homogeneous mixing disease models, the SIS and SIR effective degree models have different disease threshold conditions.  相似文献   

11.
12.
Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system''s dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network (“routing”), we define analytic measures directed at characterizing network communication when signals flow in a random walk process (“diffusion”). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.  相似文献   

13.
Containing an epidemic at its origin is the most desirable mitigation. Epidemics have often originated in rural areas, with rural communities among the first affected. Disease dynamics in rural regions have received limited attention, and results of general studies cannot be directly applied since population densities and human mobility factors are very different in rural regions from those in cities. We create a network model of a rural community in Kansas, USA, by collecting data on the contact patterns and computing rates of contact among a sampled population. We model the impact of different mitigation strategies detecting closely connected groups of people and frequently visited locations. Within those groups and locations, we compare the effectiveness of random and targeted vaccinations using a Susceptible-Exposed-Infected-Recovered compartmental model on the contact network. Our simulations show that the targeted vaccinations of only 10% of the sampled population reduced the size of the epidemic by 34.5%. Additionally, if 10% of the population visiting one of the most popular locations is randomly vaccinated, the epidemic size is reduced by 19%. Our results suggest a new implementation of a highly effective strategy for targeted vaccinations through the use of popular locations in rural communities.  相似文献   

14.
We consider a (social) network whose structure can be represented by a simple random graph having a pre-specified degree distribution. A Markovian susceptible-infectious-removed (SIR) epidemic model is defined on such a social graph. We then consider two real-time vaccination models for contact tracing during the early stages of an epidemic outbreak. The first model considers vaccination of each friend of an infectious individual (once identified) independently with probability ρ. The second model is related to the first model but also sets a bound on the maximum number an infectious individual can infect before being identified. Expressions are derived for the influence on the reproduction number of these vaccination models. We give some numerical examples and simulation results based on the Poisson and heavy-tail degree distributions where it is shown that the second vaccination model has a bigger advantage compared to the first model for the heavy-tail degree distribution.  相似文献   

15.
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.  相似文献   

16.
Understanding the effect of edge removal on the basic reproduction number ${\mathcal{R}_0}$ for disease spread on contact networks is important for disease management. The formula for the basic reproduction number ${\mathcal{R}_0}$ in random network SIR models of configuration type suggests that for degree distributions with large variance, a reduction of the average degree may actually increase ${\mathcal{R}_0}$ . To understand this phenomenon, we develop a dynamical model for the evolution of the degree distribution under random edge removal, and show that truly random removal always reduces ${\mathcal{R}_0}$ . The discrepancy implies that any increase in ${\mathcal{R}_0}$ must result from edge removal changing the network type, invalidating the use of the basic reproduction number formula for a random contact network. We further develop an epidemic model incorporating a contact network consisting of two groups of nodes with random intra- and inter-group connections, and derive its basic reproduction number. We then prove that random edge removal within either group, and between groups, always decreases the appropriately defined ${\mathcal{R}_0}$ . Our models also allow an estimation of the number of edges that need to be removed in order to curtail an epidemic.  相似文献   

17.
Recent work by Volz (J Math Biol 56:293–310, 2008) has shown how to calculate the growth and eventual decay of an SIR epidemic on a static random network, assuming infection and recovery each happen at constant rates. This calculation allows us to account for effects due to heterogeneity and finiteness of degree that are neglected in the standard mass-action SIR equations. In this note we offer an alternate derivation which arrives at a simpler—though equivalent—system of governing equations to that of Volz. This new derivation is more closely connected to the underlying physical processes, and the resulting equations are of comparable complexity to the mass-action SIR equations. We further show that earlier derivations of the final size of epidemics on networks can be reproduced using the same approach, thereby providing a common framework for calculating both the dynamics and the final size of an epidemic spreading on a random network. Under appropriate assumptions these equations reduce to the standard SIR equations, and we are able to estimate the magnitude of the error introduced by assuming the SIR equations.  相似文献   

18.
An epidemic spreading through a network of regular, repeated, contacts behaves differently from one that is spread by random interactions: regular contacts serve to reduce the speed and eventual size of an epidemic. This paper uses a mathematical model to explore the difference between regular and random contacts, considering particularly the effect of clustering within the contact network. In a clustered population random contacts have a much greater impact, allowing infection to reach parts of the network that would otherwise be inaccessible. When all contacts are regular, clustering greatly reduces the spread of infection; this effect is negated by a small number of random contacts.  相似文献   

19.
Groendyke C  Welch D  Hunter DR 《Biometrics》2012,68(3):755-765
Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential-family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible-exposed-infectious-removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma-distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population-separate from the transmission process-as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model-the network, transmission tree, network parameters, and SEIR parameters-and perform Bayesian model selection to find the best-fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.  相似文献   

20.
The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号