首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The 2009 swine-origin influenza virus (S-OIV, H1N1 subtype) has developed into a new pandemic influenza as announced by the World Health Organization. In order to uncover clues about the determinants for virulence and pathogenicity of the virus, we characterized the functional modules of the surface glycoprotein hemagglutinin (HA), the most important protein in molecular epidemiology and pathogenesis of influenza viruses. We analyzed receptor binding sites, basic patch, neutralization antibody epitopes and T cell epitopes in the HA protein of the current S-OIV according to the corresponding functional and structural modules previously characterized in other H1 HA molecules or HA molecules of other subtypes. We compared their differences and similarities systematically. Based on the amino acids defined as the functional and structural modules, the HA protein of 2009 S-OIV should specifically bind to the human 2,6-receptor. The D225G/E mutation in HA, which is found in some isolates, may confer dual binding specificity to the 2,3- and 2,6-receptor based on previously reported work. This HA variant contains two basic patches, one of which results in increased basicity, suggesting enhanced membrane fusion function. The 2009 S-OIV HA also has an extra glycosylation site at position 276. Four of the five antibody neutralization epitopes identified in A/RP/8/34(H1N1) were exposed, but the other was hidden by a glycosylation site. The previously identified cytotoxic T cell epitopes in various HA molecules were summarized and their corresponding sequences in 2009 S-OIV HA were defined. These results are critical for understanding the pathogenicity of the virus and host immune response against the virus.  相似文献   

2.
The H1N1 2009 virus is pandemic in many countries. The genome of this virus contains eight segments. Among the eight segments maximum numbers of mutation occur at the segment 1 and segment 4 which codes for PB2 subunit and hemagglutinin (HA) and less number of mutations occur in segment 6 which codes for neuraminidase (NA) protein. Neuraminidase (NA) inhibitors (Oseltamivir and Zanamivir) are presently used as an anti-flu drugs. In the present study, the in silico efficacy of different drugs was tested against the swine flu virus. 3D structures of neuraminidase (NA) proteins of H1N1 2009 were generated using Geno3D. The 3D structure of H1N1 1918 was downloaded from PDB. Interaction study was done using Arguslab 4 and PyMol view. Oseltamivir and Zanamivir have good number of interactions with H1N1 2009 virus and the scoring function also support to this result. When compared with the 1918 H1N1 viral protein, 2009 H1N1 NA protein shows more number of interaction and good scoring function. The RMSD value of before and after docking are found to be same at 0.04A° for both the drugs. The force field energy of NA protein 2009 was found to be −15603.529 KJ/mol before docking. The force field energy was found to be decreased after docking at −17620.740 KJ/mol with Tamiflu and −17652.242 KJ/mol with Zanamivir. The number of interaction and scoring function shows that Oseltamivir and Zanamivir will be able to effectively control the present pandemic H1N1 virus 2009.  相似文献   

3.
Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for α2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For α2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with α2-6- and α2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for α2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.  相似文献   

4.
The discovery of microRNAs (miRNAs) is a remarkable breakthrough in the field of life science, and they are important actors which regulate gene expression in diverse cellular processes. Recently, several reports indicated that miRNAs can also target viruses and regulate virus replication. Here we discovered 36 pig-encoded miRNAs and 22 human-encoded miRNAs which have putative targets in swine influenza virus (SIV) and Swine-Origin 2009 A/H1N1 influenza virus (S-OIV) genes respectively. Interestingly, the putative interactions of ssc-miR-124a, ssc-miR-136 and ssc-miR-145 with their SIV target genes had been found to be maintained almost throughout all of the virus evolution. Enrichment analysis of previously reported miRNA gene expression profiles revealed that three miRNAs are expressed at higher levels in human lung or trachea tissue. The hsa-miR-145 and hsa-miR-92a putatively target the HA gene and hsa-miR-150 putatively targets the PB2 gene. Analysis results based on the location distribution from which virus was isolated and sequence conservation imply that some putative miRNA-mediated host-virus interactions may characterize the location-specificity.  相似文献   

5.

Background

The influenza A(H1N1)2009 virus has been the dominant type of influenza A virus in Finland during the 2009–2010 and 2010–2011 epidemic seasons. We analyzed the antigenic characteristics of several influenza A(H1N1)2009 viruses isolated during the two influenza seasons by analyzing the amino acid sequences of the hemagglutinin (HA), modeling the amino acid changes in the HA structure and measuring antibody responses induced by natural infection or influenza vaccination.

Methods/Results

Based on the HA sequences of influenza A(H1N1)2009 viruses we selected 13 different strains for antigenic characterization. The analysis included the vaccine virus, A/California/07/2009 and multiple California-like isolates from 2009–2010 and 2010–2011 epidemic seasons. These viruses had two to five amino acid changes in their HA1 molecule. The mutation(s) were located in antigenic sites Sa, Ca1, Ca2 and Cb region. Analysis of the antibody levels by hemagglutination inhibition test (HI) indicated that vaccinated individuals and people who had experienced a natural influenza A(H1N1)2009 virus infection showed good immune responses against the vaccine virus and most of the wild-type viruses. However, one to two amino acid changes in the antigenic site Sa dramatically affected the ability of antibodies to recognize these viruses. In contrast, the tested viruses were indistinguishable in regard to antibody recognition by the sera from elderly individuals who had been exposed to the Spanish influenza or its descendant viruses during the early 20th century.

Conclusions

According to our results, one to two amino acid changes (N125D and/or N156K) in the major antigenic sites of the hemagglutinin of influenza A(H1N1)2009 virus may lead to significant reduction in the ability of patient and vaccine sera to recognize A(H1N1)2009 viruses.  相似文献   

6.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   

7.
A scheme for evolutionary interrelations of the H1-subunits of influenza hemagglutinin genes is proposed for the natural variants of influenza A virus of the H1N1-subtype. It is based on experimental data obtained by the authors and those reported in the literature. Differences among these viral isolates in their amino acid sequences and in the reaction of hemagglutinin inhibition obtained with a set of monoclonal antibodies are compared. The distinctions in the ability of the viruses to react with several monoclonal antibodies are attributed to differences in the primary structures of their hemagglutinins. Some aspects of hemagglutinin gene evolution are discussed in relation to vaccination.  相似文献   

8.
Xu W  Han L  Lin Z 《PloS one》2011,6(3):e18016
The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.  相似文献   

9.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

10.
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes.  相似文献   

11.
Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.  相似文献   

12.
13.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

14.
Immunogenic properties of influenza virus hemagglutinin, isolated by new detergents O-14 (desintegron-O) and B-14 (desintegron-B) have been studied. Hemagglutinin isolated by desintegron-O has been found to be more immunogenic than virions. It has been shown that hemagglutinin isolated by desintegron-B induces a lower humoral immune response than the influenza virus.  相似文献   

15.
16.

Background

Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country.

Methodology and Findings

From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico.

Conclusions

Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country.  相似文献   

17.
Quantum mechanical fragment molecular orbital calculations have been performed for receptor binding of the hemagglutinin protein of the recently pandemic influenza 2009 H1N1, A/swine/Iowa/1930, and A/Puerto Rico/8/1934 viruses to α2-6 linked sialyloligosaccharides, as analogs of human receptors. The strongest receptor binding affinity was observed for the 2009/H1N1pdm. The inter-fragment interaction energy analysis revealed that the amino acid mutation of 2009/H1N1pdm, Ser145Lys, was a major cause of such strong binding affinity. Strong ionic pair interaction between the sialic acid and Lys145 was observed only in the 2009/H1N1pdm, in addition to the hydrogen bond between the sialic acid and Gln226 observed in all the HAs. Therefore, pandemic 2009/H1N1pdm has been found to recognize the α2-6 receptor much stronger than the 1930-swine and 1934-human.  相似文献   

18.
By nature of their segmented RNA genome, influenza A viruses (IAVs) have the potential to generate variants through a reassortment process. The influenza nonstructural (NS) gene is critical for a virus to counteract the antiviral responses of the host. Therefore, a newly acquired NS segment potentially determines the replication efficiency of the reassortant virus in a range of different hosts. In addition, the C-terminal PDZ-binding motif (PBM) has been suggested as a pathogenic determinant of IAVs. To gauge the pandemic potential from human and avian IAV reassortment, we assessed the replication properties of NS-reassorted viruses in cultured cells and in the lungs of mice and determined their transmissibility in guinea pigs. Compared with the recombinant A/Korea/01/2009 virus (rK09; 2009 pandemic H1N1 strain), the rK09/VN:NS virus, in which the NS gene was adopted from the A/Vietnam/1203/2004 virus (a human isolate of the highly pathogenic avian influenza H5N1 virus strains), exhibited attenuated virulence and reduced transmissibility. However, the rK09/VN:NS-PBM virus, harboring the PBM in the C-terminus of the NS1 protein, recovered the attenuated virulence of the rK09/VN:NS virus. In a guinea pig model, the rK09/VN:NS-PBM virus showed even greater transmission efficiency than the rK/09 virus. These results suggest that the PBM in the NS1 protein may determine viral persistence in the human and avian IAV interface.  相似文献   

19.
本文通过比较2011年分离培养的1株季节性甲型H1N1流行性感冒(简称流感)病毒(A/Shanghai/1167/2011(H1N1))与历年季节性甲型H1N1流感病毒的血凝素(HA)基因,追溯该病毒的基因变异与来源,探讨该毒株的出现对流感防控工作的意义.采用反转录-聚合酶链反应(RT-PCR)方法扩增病毒的HA和神经氨酸酶(NA)片段,并进行测序;应用分子生物学软件对获得的序列进行分析,绘制基因进化树;同时,通过血凝抑制试验检测2011年下半年健康人群中该流感病毒的抗体水平.结果显示,A/Shanghai/1167/2011(H1N1)的HA基因序列与世界卫生组织(WHO)2007~2008年季节性甲型H1N1流感病毒疫苗株A/Brisbane/59/2007(H1N1)最接近,同源性达99.2%,与新型甲型H1N1流感病毒A/California/07/2009疫苗株同源性仅为72.4%.其HA基因裂解位点为PSIQSR↓GLF,尚未出现高致病性的分子特征.HA片段共编码557个氨基酸,有9个潜在的糖基化位点,序列与2009年前WHO疫苗株A/NewCaledonia/20/1999(H1N1)、A/SolomonIslands/3/2006(H1N1)和/Brisbane/59/2007(H1N1)相比,分别有15、12和4处不同,这些差异分布在Sa、Sb、Ca1、Ca2、Cb 5个抗原决定簇的氨基酸差异分别有5、5和2处.该毒株在健康人群血清的抗体阳性率为34.33%,几何平均效价(GMT)为10.38.A/Shanghai/1167/2011(H1N1)是2011年出现在上海地区的一个季节性甲型H1N1流感病毒毒株,其抗原变异与既往季节性甲型H1N1流感病毒相比不大,但在以A(H1N1)pdm09为主要流行株的年份检测到散在发生的既往季节性甲型H1N1流感病毒毒株应当引起重视,其在人群中的抗体水平较低,易引起流行,需要提高对类流感人群中此种毒株的持续监测.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号