首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta‐analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of “mitigating synergism” is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where individual stressor effects oppose each other or where cumulative effects are reversed and enhanced.  相似文献   

2.
3.
4.
Growth factor synergism and antagonism in early neural crest development.   总被引:8,自引:0,他引:8  
This review article focuses on data that reveal the importance of synergistic and antagonistic effects in growth factor action during the early phases of neural crest development. Growth factors act in concert in different cell lineages and in several aspects of neural crest cell development, including survival, proliferation, and differentiation. Stem cell factor (SCF) is a survival factor for the neural crest stem cell. Its action is neutralized by neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) through apoptotic cell death. In contrast, SCF alone does not support the survival of melanogenic cells (pigment cell precursors). They require the additional presence of a neurotrophin (NGF, BDNF, or NT-3). Fibroblast growth factor-2 (FGF-2) is an important promoter of proliferation in neuronal progenitor cells. In neural crest cells, fibroblast growth factor treatment alone does not lead to cell expansion but also requires the presence of a neurotrophin. The proliferative stimulus of the fibroblast growth factor - neurotrophin combination is antagonized by transforming growth factor beta-1 (TGFbeta-1). Moreover, TGFbeta-1 promotes the concomitant expression of neuronal markers from two cell lineages, sympathetic neurons and primary sensory neurons, indicating that it acts on a pluripotent neuronal progenitor cell. Moreover, the combination of FGF-2 and NT3, but not other neurotrophins, promotes expression or activation of one of the earliest markers expressed by presumptive sympathetic neuroblasts, the norepinephrine transporter. Taken together, these data emphasize the importance of the concerted action of growth factors in neural crest development at different levels and in several cell lineages. The underlying mechanisms involve growth-factor-induced dependence of the cells on other factors and susceptibility to growth-factor-mediated apoptosis.  相似文献   

5.
Interactions between antimicrobial agents provide clues as to their mechanisms of action and influence the combinations chosen for therapy of infectious diseases. In the treatment of malaria, combinations of drugs, in many cases acting synergistically, are increasingly important in view of the frequency of resistance to single agents. The study of antimalarial drug interactions is therefore of great significance to both treatment and research. It is therefore worrying that the analysis of drug-interaction data is often inadequate, leading in some cases to dubious conclusions about synergism or antagonism. Furthermore, making mechanistic deductions from drug-interaction data is not straightforward and of the many reported instances of antimalarial synergism or antagonism, few have been fully explained biochemically. This review discusses recent findings on antimalarial drug interactions and some pitfalls in their analysis and interpretation. The conclusions are likely to have relevance to other antimicrobial agents.  相似文献   

6.
7.
8.
The method of the estimation of interaction between two harmful effects based on the statistical survival rate data is discussed. In terms of the competitive risk model, an independent effect was defined as a product of survival functions corresponding to an isolated effect of each injurious factor. The proposed method is based on the comparison between the animals' lifetimes in the case of the isolated effects and the actual survival rates after the combined radiation effect. The comparison of the two alternatives was made by the regression model of Cox adapted for the purposes of this study.  相似文献   

9.
10.
11.
In hepatocytes precultured for 24 h with dexamethasone glucagon increased phosphoenolpyruvate carboxykinase activity 3-4-fold with a half maximal activity increase at 30 pM. The half maximal effective glucagon concentration was enhanced 10-fold to 300 pM when insulin was added simultaneously. The glucagon-insulin antagonism was maximally expressed when glucagon was present at low physiological concentrations. At equimolar doses it was only in the concentration range around 0.1 nM that glucagon and insulin became powerful antagonists; at higher levels glucagon was the dominant hormone. In hepatocytes not pretreated with dexamethasone glucagon still enhanced phosphoenolpyruvate carboxykinase activity, but the half maximal effective dose raised more than 30-fold to 1 nM. The degree of stimulation, however, remained essentially unchanged. Thus dexamethasone shifted the glucagon sensitivity of the cells into the physiological concentration range; it exerted a half maximal effect at 10 nM. Dexamethasone was not required for the enzyme induction proper if the cells had been pretreated with the glucocorticoid. The amount of the glucagon-stimulated enzyme induction was dependent on the time period of cell pretreatment with dexamethasone. Glucagon enhanced enzyme activity to the same constant suboptimal level irrespective of whether cells had been pretreated with glucocorticoid for 1 or for 14 h. If cells were pretreated for more than 15 h, glucagon linearly increased enzyme activity further until the maximal value was reached after 24 h pretreatment. The glucagon-insulin antagonism and the glucagon-glucocorticoid synergism were observed at physiological hormone concentrations indicating that the interaction should be effective also in vivo. Dexamethasone does not seem to be generally permissive for the inducing action of glucagon, but rather sensitizes the cell towards lower physiological hormone concentrations.  相似文献   

12.
Hsieh LL  Cheng KY  Hsieh BT 《PloS one》2012,7(3):e31836
The response of thin polymer gel cassettes (called NIPAM gels) to ionizing radiation was investigated in this study. The NIPAM gels were prepared from gelatin, N-isopropyl acrylamide, tetrakis (hydroxymethyl) phosphoniumchloride, and N,N'-methylene-bis-acrylamide. Gel cassettes were irradiated in a phantom using a linear accelerator, and the polymerization morphology of irradiated NIPAM gel was characterized using scanning electron microscopy. The dose-response sensitivity of the NIPAM gels was evaluated using the differences in optical densities. The optical densities were obtained using a computer-controlled CCD camera that was connected to a planar illumination source for acquisition of optical transmission images. The central axis depth dose profiles of the phantom were extracted, and a comparison with ionization chamber measurements demonstrated similarities in profiles. The sensitivity, linearity of the response, accuracy, and reproducibility of the polymer gel cassettes were acceptable. However, the profiles of the half-blocked field irradiation showed no significant dispersion in the visible region. This study also extensively investigated the spatial stability of the NIPAM gel. The results showed that the gel cassette response remains stable for up to three months after irradiation.  相似文献   

13.
14.
15.
16.
Bacterial Synergism or Antagonism in a Gel Cassette System   总被引:3,自引:2,他引:1       下载免费PDF全文
The growth and the metabolic activity of Shewanella putrfaciens, Brochothrix thermosphacta, and Pseudomonas sp., when cultured individually or in all possible combinations in gel cassettes system supplemented with 0.1% glucose at 5°C, were investigated. The overall outcome was that the coexistence of the above-mentioned microorganisms affected not only each growth rate but also their type of metabolic end products compared to the control cultures. These effects were varied and depended on the selection of the combination of the tested bacteria. For example, the growth of Pseudomonas sp. strains cocultured with either B. thermosphacta or S. putrefaciens strains resulted in different effects: a promoting one for the first and an inhibitory one for the second. Moreover, the production of formic acid and two unidentified organic acids (peaks a and b) was characteristic in all cases in which S. putrefaciens was cultured.  相似文献   

17.
18.
19.
20.
Rates of fluid and ion secretion by insect Malpighian tubules are controlled by peptides, including CRF-related peptides and kinins, and in some species by serotonin. It now appears to be a general rule that tubule secretion rate is controlled through the interaction of two or more haemolymph-borne factors. In this review we suggest that these interactions may be classified as synergistic, cooperative, or antagonistic. When presented together, two diuretic factors may act in synergism, so that fluid secretion is stimulated to a greater extent than the sum of their individual effects. Synergism may involve one or more second messenger systems. Alternatively, diuretic factors may act in cooperation, so that although their overall effects are additive, cation and anion transport pathways are controlled separately by distinct second messenger systems. There is also one example of antagonism between factors controlling tubule secretion and between their respective second messengers; one factor is stimulatory, the other is inhibitory. In addition to the complex control of fluid and ion transport by haemolymph-borne factors, sophisticated autonomous regulatory mechanisms have been identified in Malpighian tubules. When triggered by appropriate stimuli, these mechanisms play homeostatic roles, preserving haemolymph osmolality or ionic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号