首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The material compositions and the technological procedures to prepare biodegradable films with the film blowing technology based on thermoplastic starch were studied in this work. The activities were focused on the analysis of the effects of starch source (maize, potato and wheat), supplier (Roquette, Cerestar and Cameo) and the type of plasticizers (glycerol, urea and formamide) and their content on the physical–chemical and mechanical properties. Moreover, in order to develop a film blowing technology, material composition as well as processing condition were optimized. Among 10 varieties of thermoplastic starch prepared, the combination of urea and formamide as plasticizer restrained retrogradation and improved mechanical properties. Extensional rheological properties of the thermoplastic starch films were also investigated: the results showed that the occurrence of strain-hardening behaviour in some of the investigated compositions lead to a positive effect on the film blowing process. In this study we found that the combination of high-amylose (>51%) starch and urea/formamide mixtures as plasticizer produced an homogenous film of a 50 μm thickness and a robust film blowing process due to the good elongational viscosity, high deformability of the melt and strain-hardening behaviour.  相似文献   

2.
Hydroxypropylated and oxidised potato starch (HONPS) was used together with glycerol and water to produce thermoplastic starch. The amount of glycerol was kept constant at 22 parts by weight per 100 parts of dry starch. The thermoplastic starch was converted into films/sheets using three different processing techniques; casting, compression moulding and film blowing. The last two methods represent typical thermoplastic conversion techniques requiring elevated processing temperatures. By means of size-exclusion chromatography, it was found that compression moulding and film blowing led to some degradation of high-molecular weight amylopectin as well as of high-molecular weight amylose-like molecules. The degradation was significantly less pronounced for the cast films. The morphology of the specimens was quite complex and phase separations on different levels were identified. In the cast films and, to a lesser extent, in the compression-moulded specimens, a fine network structure could be distinguished. Such a structure could however not be ascertained in the film-blown material and this is discussed in terms of the thermo-mechanical treatment of the starch materials.  相似文献   

3.
Thermoplastic starch was prepared by mixing native high amylose potato starch and normal potato starch in a Buss co-kneading extruder at starch to glycerol ratios of 100:45 and 100:30. The materials were also conditioned to different moisture contents at different relative humidities at 23 °C. After the mixing, the compounds were extruded into sheets with a Brabender laboratory extruder. The thermoplastic high amylose materials exhibited a higher melt viscosity than the normal potato starch materials when conditioned at 53% relative humidity. Increasing the moisture content in HAP from 27% to 30% (by weight) lowered the melt viscosity to the same level as that of normal potato starch with a moisture content of 28%. In general, the high amylose materials were more difficult to extrude than the thermoplastic material based on normal starch. The main extrusion problems encountered with the high amylose starch were unstable flow, insufficient melt tenacity and clogging of the die. By increasing the moisture content, increasing the compression ratio of the screw and increasing the rotation rate of the screw, the problems were reduced or eliminated. However, only with a starch to glycerol ratio of 100:45 was an acceptable extrusion result obtained. Extruded sheets of such high amylose materials had a stress at break of about 5 MPa at room temperature and 53% relative humidity, whereas the corresponding value for normal potato (thermoplastic) starch was 3 MPa. The elongation at break was also higher in the case of the high amylose material. The results are discussed in terms of residual crystallinity of the starch materials.  相似文献   

4.
Maleated thermoplastic starch by reactive extrusion   总被引:2,自引:0,他引:2  
Novel maleated thermoplastic starch (MTPS) with both improved processing and reactivity useful in the melt-blending with biodegradable polyester was prepared through in situ reactive modification of thermoplastic starch (TPS) with maleic anhydride (MA) as esterification agent. Glycerol was used as plasticizer. Physico-chemical parameters of MTPS were determined at different MA contents, while keeping both the content in glycerol (20 wt% by starch), and the processing temperature constant (150 °C). Soxhlet extraction attested for the complete incorporation of glycerol into the starch backbone during the maleation process at low content in MA. In addition, two-dimensional liquid-phase NMR measurements attested for the preferential esterification of starch backbone at C6, together with the occurrence of some hydrolysis and glucosidation reactions. Such reactions promoted by MA moieties reduced the intrinsic viscosity of the MTPS, expecting an improvement in its processability. WAXS diffraction analyses confirmed the complete disruption of the granular structure of native starch in MTPS during the reactive extrusion processing.  相似文献   

5.
Thermoplastic starch-waxy maize starch nanocrystals nanocomposites   总被引:1,自引:0,他引:1  
Waxy maize starch nanocrystals obtained by hydrolysis of native granules were used as a reinforcing agent in a thermoplastic waxy maize starch matrix plasticized with glycerol. Compared to our previous studies on starch nanocrystals reinforced natural rubber (NR) [Macromolecules 2005, 38, 3783; 2005, 38, 9161], the present system presents two particularities: (i) thermoplastic starch is a polar matrix, contrarily to NR, and (ii) the chemical structures of the matrix and the filler are similar. The influence of the glycerol content, filler content, and aging on the reinforcing properties of waxy maize starch nanocrystals (tensile tests, DMA) and crystalline structure (X-ray diffraction) of materials were studied. It was shown that the reinforcing effect of starch nanocrystals can be attributed to strong filler/filler and filler/matrix interactions due to the establishment of hydrogen bonding. The presence of starch nanocrystals leads to a slowing down of the recrystallization of the matrix during aging in humid atmosphere.  相似文献   

6.
This study aimed to gain a deep understanding of the preparation mechanism of the thermoplastic potato starch (TPPS) by using melt-mixing as a production method, to pursue the changes occurred on the microstructure, morphology and thermal properties of potato starch, TPPS was prepared using a mixture of potato starch with glycerol and water as plasticizer in an internal mixer. The steps of the phase transition, happening by applying harsh conditions (60 rpm, 160 °C, and 7 min), were followed by monitoring the evolution of torque during the mixing time. It was shown that the granules structure was destroyed and a new phase was formed. This was proved by SEM which gave the evidence that the morphology of the TPPS was homogeneous with the smooth surface means that the mixing conditions used in this work were good enough to obtain the thermoplastic starch with a high level of homogeneity in all dimensions. FTIR analysis allowed deducing the formation of new H-bonds between the starch and plasticizers molecules instead of intra and intermolecular H-bonds in the native starch that was destructed through the melt-mixing process., These caused starch chains gain mobility and as the results decreasing in crystallinity, where the XRD analysis exhibited that the crystallinity decreased from 14.5% resulting from B-type in native potato starch to 9% resulting from B-type and VH-type in TPPS. TGA and DSC analysis proved a decreasing in the thermal stability in the TPPS as compared to the starch granules.  相似文献   

7.
The mechanical and melt flow properties of two thermoplastic potato starch materials with different amylose contents were evaluated. The materials were prepared by mixing starch, glycerol, and water, mainly in the weight proportions of 10:3:4.5. Compression molding was used to produce sheets/films with a thickness in the range of 0.3-1 mm. After conditioning at 53% relative humidity (RH) and 23 C, the glycerol-plasticized sheets with a higher amylose content (HAP) were stronger and stiffer than the normal thermoplastic starch (NPS) with an amylose content typical for common potato starch. The tensile modulus at 53% RH was about 160 MPa for the high-amylose material and about 120 MPa for the plasticized NPS. The strain at break was about 50% for both materials. The stress at break was substantially higher for the HAP materials than for the NPS materials, 9.8 and 4.7 MPa, respectively. Capillary viscometry at 140 C showed that the high-amylose material had a higher melt viscosity and was more shear-thinning than the NPS. Dynamic mechanical measurements indicated a broad transition temperature range for both types of starch material. The main transition peaks for glycerol-plasticized starch were located at about room temperature with the transition for the HAP material being at a somewhat higher temperature than that of the NPS material with a lower amylose content. It was also noted that the processing conditions used during the compression molding markedly affected the mechanical properties of the starch material.  相似文献   

8.
Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control.  相似文献   

9.
Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB). The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2–11 nm thick and 360–1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample.  相似文献   

10.
Xu J  Guo BH 《Biotechnology journal》2010,5(11):1149-1163
Poly(butylene succinate) (PBS) and its copolymers are a family of biodegradable polymers with excellent biodegradability, thermoplastic processability and balanced mechanical properties. In this article, production of the monomers succinic acid and butanediol, synthesis, processing and properties of PBS and its copolymers are reviewed. The physical properties and biodegradation rate of PBS materials can be varied in a wide range through copolymerization with different types and various contents of monomers. PBS has a wide temperature window for thermoplastic processing, which makes the resin suitable for extrusion, injection molding, thermoforming and film blowing. Finally, we summarized industrialization and applications of PBS.  相似文献   

11.
Zhang X  Hoobin P  Burgar I  Do MD 《Biomacromolecules》2006,7(12):3466-3473
The mechanical properties, phase composition, and molecular motions of thermally processed wheat gluten- (WG-) based natural polymer materials were studied by mechanical testing, dynamic mechanical analysis (DMA), and solid-state NMR spectroscopy. The performance of the materials was mainly determined by the denaturization and cross-linking occurring in the thermal processing and the nature or amount of plasticizers used. The pH effect also played an important role in the materials when water was used as the only plasticizer (WG-w). Alkaline conditions modified the chemical structure of WG, possibly via deamidation; enhanced the thermal cross-linking of WG macromolecules to form a more stable aggregation structure; and promoted intermolecular interactions between water and all components in WG (proteins, starch, and lipid), resulting in a strong adhesion among different components and phases. The saponification of lipid under alkaline conditions also enhanced the hydrophilicity of lipid and the miscibility among lipid, water, and WG components. However, when glycerol was used with water as a plasticizer (WG-wg), the phase mobility and composition of the materials mainly depended on the content of glycerol when the water content was constant. During thermal processing under either acidic or alkaline conditions, glycerol was unlikely to thermally cross-link with WG as suggested previously. The advanced mechanical performance of the WG-wg materials was attributed to the nature of hydrogen-bonding interactions between glycerol and WG components in the materials. This caused the whole material to behave like a strengthened "cross-linked" structure at room temperature due to the low mobility of glycerol. The pH effect on phase mobility and compositions of WG-wg systems was not as significant as that for WG-w materials.  相似文献   

12.
以玉米粉和木薯淀粉为原料 ,比较了二者的液化和糖化 ,结果表明 :在相同条件下 ,木薯淀粉液化时间较短 ,玉米粉液化时间较长 ,但二者的液化液均较易糖化。然后分别以玉米粉和木薯淀粉糖化液为原料 ,用耐高渗酵母发酵生产甘油 ,研究了玉米浆对二者甘油发酵的影响并对二者进行了比较 ,结果表明 :当玉米粉和木薯淀粉糖化液还原糖含量分别为 2 5 % ,尿素为 0 .2 % ,pH为 4 .5时 ,用玉米粉糖化液发酵甘油时可不添加玉米浆 ,甘油产量最高可达 2 % ,而用木薯淀粉糖化液发酵甘油时 ,适宜的玉米浆为 0 .15 % ,甘油产量最高可达 4 .9%。对二者的比较结果表明 :用玉米粉糖化液为发酵原料时 ,发酵时间较短 ,残糖降低较快 ,甘油产量较低 ,在 36h之后 ,甘油开始反耗。而用木薯淀粉糖化液发酵时 ,发酵时间较长 ,残糖降低较慢 ,甘油产量较高 ,在 72h之后 ,甘油开始反耗。  相似文献   

13.
The aim of the present study was to investigate some mechanical properties of starch films. Starch is a natural common polymer in nature and the use of natural materials is increasing in the industries. In this study, the mechanical properties of starch plasticized with 30 parts by weight, of glycerol, are investigated. For the mechanical testing films of different thickness were used, the thickness varied between 0.5 and 2.5 mm. Tg was measured with a differential scanning calorimeter and with a dynamical mechanical analysis. The starch films were tested in tension and characterised in terms of stiffness, strength and failure strain. Fracture toughness was measured by single edge notch tests. Both stiffness and strength showed a strong dependence on film thickness, stronger then expected from linear fracture mechanics. This can be due to the different molecule orientation in the films, and due to the crystallinity of the films.  相似文献   

14.
The need to replace conventional polymers due to environmental pollution caused by them has led to increased production of biodegradable polymers such as starch. Thus, the application possibilities of starch have increased. In this study, we produced and characterized biodegradable films derived from native and oxidized potato starch. The film-forming solution was prepared with different concentrations of extracted starch (native or oxidized) and a plasticizer (glycerol or sorbitol). Then, the mechanical, barrier, morphological, and structural properties of the films were characterized. The moisture content of the films varied from 15.35?±?1.31 to 21.78?±?0.49%. The elastic modulus of the films ranged from 219?±?14.97 to 2299?±?62.91 MPa. The film of oxidized starch plasticized with sorbitol in the lowest content was the most resistant and flexible; moreover, this film also presented lower water vapor permeability and low solubility in water. Fourier-transform infrared spectroscopic analysis of the biodegradable films indicated the presence of same functional groups as those of starch with bands in the same regions. The film thickness was lower for the films plasticized with glycerol whereas the color variation (Δ?) was lower for the ones plasticized with sorbitol. In case of both plasticizers, the increase in their content decreased the Δ? value. All the biodegradable films presented stability against water absorption owing to their low solubility in water. Morphological evaluation revealed the presence of partially gelatinized starch granules in the films. The roughness parameter (Rq) of the films varied from 3.39 to 10.9 nm, indicating that their surfaces are smooth. X-ray diffraction studies showed a B-type pattern for the starches, which is representative of tubers. Further, the films present higher relative crystallinity (RC) compared to the starches. The biodegradable starch films are uniform, transparent and with low solubility in water. The oxidation of starch and use of sorbitol as a plasticizer resulted in improved properties of the starch films, which is suitable for application.  相似文献   

15.
A design of experiments was performed on extruded starch based materials studied in a recently published article [Chaudhary, A. L., Miler, M., Torley, P. J., Sopade, P. A., & Halley, P. J. (2008). Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydrate Polymers, 74(4), 907–913] highlighting the effects of amylose content, chemical modification and extrusion on a range of maize starches. An investigation into the effects of starch type (unmodified 0–80% amylose starch; hydroxypropylated 80% amylose starch), screw speed and ageing after moulding on final product properties such as mechanical properties (Young’s modulus, maximum stress and strain at break), moisture absorption, morphology and retrogradation are included. A full factorial design was used to study these starch type, processing and final product property relationships. Microscopy was used to observe any morphological difference between the various starch types in thermoplastic starch (TPS) blends and X-ray diffraction (XRD) was used to observe changes in crystallinity over time (retrogradation). The results show that 0% amylose (waxy maize) and hydroxypropylated 80% amylose thermoplastic starches have mechanical properties comparable to that of low density polyethylene (LDPE) and high density polyethylene (HDPE), therefore these materials have the potential to be an environmentally friendly alternative to current polymer resins.  相似文献   

16.
Effect of glycerol on behaviour of amylose and amylopectin films   总被引:2,自引:0,他引:2  
The effect of water and glycerol on sorption and calorimetric Tgs of amylose and amylopectin films were examined. The mechanical properties of the films were also analysed under varying glycerol content at constant RH and temperature. Based on changes observed in sorption and tensile failure behaviour glycerol was strongly interacted with both starch polymers. Even though water was observed to be more efficient plasticiser than glycerol, glycerol also affected the Tg. But in spite of the observed decrease in Tg under low glycerol contents brittleness of the films increased based on changes in elongation. The increase in brittleness of both polymers was also in agreement with their actual behaviour. At around 20% glycerol great change in the rheological properties occurred. Above 20% glycerol amylose film showed much larger elongation than the low glycerol content films and was still strong but the amylopectin produced a very week and non-flexible film.  相似文献   

17.
This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.  相似文献   

18.
Crystallinity and structure of starch using wide angle X-ray scattering   总被引:1,自引:0,他引:1  
Wide angle X-ray diffraction was used to evaluate the crystalline fraction of a variety of starches, using preliminary smoothing then an iterative smoothing algorithm to estimate amorphous background scattering. This methodology was then used to determine initial crystallinity and monitor gelation and retrogradation of high amylose thermoplastic starch used to produce film. Retrogradation was monitored over a 5-day period. It was found that the starch film retrograded rapidly over the first 12 h with the film displaying both B-type crystallinity and long range amorphous ordering that were separately quantitatively calculated. Changes in starch films, including complete or partial gelatinization, retrogradation and crystallinity, were all determined through wide angle X-ray diffraction.  相似文献   

19.
Biopolymers are engineered physically, chemically, genetically or biochemically (i.e. via biotechnological fermentation process) with the purpose to meet specific industry requirements of a wide range of applications. Various technological strategies are reported to create biodegradable plastics with unique physicochemical properties and a predetermined service life. The combination of polymeric material in composites is considered to optimize their mechanical behavior and reliability. Extrusion, a thermomechanical process, is the most widely used technology for producing thermoplastic starch. However, the ease of cellulose accessibility for thermal processing is of increasing economic importance but is complicated by the presence of very strong intermolecular hydrogen bonds in cellulose. Chemical modification is still the common way to get cellulosic thermoplastic products from renewable resources. Therefore, STEP ITN research activities focus on understanding the fundamental chemistry governing polysaccharide transformation and shaping, to utilize this knowledge to introduce thermoplasticity and new functionalities in polymers such as unmodified cellulose.  相似文献   

20.
Yam starch films were produced by thermal gelatinization of starch suspensions using different starch and glycerol concentrations and were compared to control samples without glycerol. Films were characterized by polarized light microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), X-ray diffraction, water vapor permeability (WVP) and water sorption isotherms. The polarized light microscopy and DSC data showed that starch gelatinization for film formation was complete. Plasticized films have a homogeneous structure as observed by SEM. At water activities >0.43, glycerol increased the equilibrium moisture content of the films due to its hydrophilic character. X-ray pattern of the yam films could be assigned to a B-type starch; during storage this pattern remained almost the same, however a slight recrystallization process could be observed. Amylopectin retrogradation was not observed by DSC with storage time of the films. Glass transition temperatures of films with glycerol were lower than those of control films as measured by DSC and TMA. WVP of yam starch films increased with the presence of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号