首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KATP channels are composed of a small inwardly rectifying K+ channel subunit, either KIR6.1 or KIR6.2, plus a sulfonylurea receptor, SUR1 or SUR2 (A or B), which belong to the ATP-binding cassette superfamily. SUR1/KIR6.2 reconstitute the neuronal/pancreatic beta-cell channel, whereas SUR2A/KIR6.2 and SUR2B/KIR6.1 (or KIR6.2) are proposed to reconstitute the cardiac and the vascular-smooth-muscle-type KATP channels, respectively. We report that potassium channel openers (KCOs) bind to and act through SURs and that binding to SUR1, SUR2A and SUR2B requires ATP. Non-hydrolysable ATP-analogues do not support binding, and Mg2+ or Mn2+ are required. Point mutations in the Walker A motifs or linker regions of both nucleotide-binding folds (NBFs) abolish or weaken [3H]P1075 binding to SUR2B, rendering reconstituted SUR2B/KIR6.2 channels insensitive towards KCOs. The C-terminus of SUR affects KCO affinity with SUR2B approximately SUR1 > SUR2A. KCOs belonging to different structural classes inhibited specific [3H]P1075 binding to SUR2B in a monophasic manner, with the exception of minoxidil sulfate, which induced a biphasic displacement. The affinities of KCO binding to SUR2B were 3.5-8-fold higher than their potencies for activation of SUR2B/KIR6.2 channels. The results establish that SURs are the KCO receptors of KATP channels and suggest that KCO binding requires a conformational change induced by ATP hydrolysis in both NBFs.  相似文献   

2.
Surface charge and properties of cardiac ATP-sensitive K+ channels   总被引:1,自引:0,他引:1  
ATP-sensitive K+ (KATP) channels are present in a wide variety of tissues. The sensitivity of these channels to closure by cytosolic ATP (ATPi) varies significantly among different tissues and even within the same tissue. The purpose of this study was to test the hypothesis that negative surface charges modulate the sensitivity of the KATP channels to ATPi by influencing surface potential in the vicinity of the ATP- binding site(s) of the channel. Unitary currents through KATP channels were measured in inside-out membrane patches excised from rabbit ventricular myocytes using the patch-clamp technique. Agents known to be effective at screening negative surface charges were applied to the cytosolic surface of the patches, and their effects on ATP sensitivity were examined. These agents included Mg2+ (2-15 mM), Ba2+ (2-10 mM), and the polycations protamine (0.01-10 microM), poly-L-lysine (500 microM), and poly-L-arginine (0.5 microM). The divalent cations and the various polycations all dramatically reduced the concentration of ATPi required to half-maximally suppress current through KATP channels (Kd), from approximately 100 microM in the absence of these agents to 1.6-8 microM in their presence. The effects were dose dependent. Protamine also reduced the sensitivity of KATP channels to block by cytosolic ADP. The sensitivity of KATP channels to block by ATP was independent of membrane potential, suggesting that the ATP-binding site is not located within the transmembrane voltage field. The effects of the polycation poly-L-lysine on ATP sensitivity were also independent of membrane potential or the direction (inward or outward) of current through KATP channels. In addition to increasing ATP sensitivity, Mg2+, Ba2+, and the polycations all caused dose-dependent block of inward and outward currents through KATP channels over similar concentration ranges as their effects on ATP sensitivity. The block of inward current by polycations was not associated with reduction of single-channel conductance or evidence of fast open channel block. However, the polycations did cause a modest reduction in single-channel conductance of outward current. These results are consistent with the presence of negative surface charges that reduce the local ATP concentration at the ATP-binding site(s) on the channel, relative to the bulk cytosolic ATP concentration. Screening these negative surface charges with divalent cations or polycations decreases the local ATP gradient, resulting in a decrease in the apparent Kd for ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Molecular determinants of KATP channel inhibition by ATP.   总被引:7,自引:0,他引:7       下载免费PDF全文
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

4.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

5.
KATP channels gated by intracellular nucleotides and phospholipids.   总被引:6,自引:0,他引:6  
The KATP channel is a heterooctamer composed of two different subunits, four inwardly rectifying K+ channel subunits, either Kir6. 1 or Kir6.2, and four sulfonylurea receptors (SUR), which belong to the family of ABC transporters. This unusual molecular architecture is related to the complex gating behaviour of these channels. Intracellular ATP inhibits KATP channels by binding to the Kir6.x subunits, whereas Mg-ADP increases channel activity by a hydrolysis reaction at the SUR. This ATP/ADP dependence allows KATP channels to link metabolism to excitability, which is important for many physiological functions, such as insulin secretion and cell protection during periods of ischemic stress. Recent work has uncovered a new class of regulatory molecules for KATP channel gating. Membrane phospholipids such as phosphoinositol 4, 5-bisphosphate and phosphatidylinositiol 4-monophosphate were found to interact with KATP channels resulting in increased open probability and markedly reduced ATP sensitivity. The membrane concentration of these phospholipids is regulated by a set of enzymes comprising phospholipases, phospholipid phosphatases and phospholipid kinases providing a possible mechanism for control of cell excitability through signal transduction pathways that modulate activity of these enzymes. This review discusses the mechanisms and molecular determinants that underlie gating of KATP channel by nucleotides and phospholipids and their physiological implications.  相似文献   

6.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 microM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

7.
The ATP-sensitive K+ channels (KATP) play an important role in regulating membrane excitability. These channels are regulated by H+ in addition to ATP, ADP, and phospholipids. To understand how protons affect the single-channel properties, Kir6.2DeltaC36 currents were studied in excised inside-out patches. We chose to study the homomeric Kir6.2 channel with 36 amino acids deleted at the C-terminal end, as there are ADP/ATP-binding sites in the SUR subunit, which may obscure the understanding of the channel-gating process. In the absence of ATP, moderate intracellular acidosis (pH 6.8) augmented P(open) with small suppression (by approximately 10%) of the single-channel conductance. The long and intermediate closures were selectively inhibited, leading to a shortening of the mean closed time without significant changes in the mean open time. Stronger acidification (相似文献   

8.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

9.
Pulmonary veins (PV) make a significant contribution to total pulmonary vascular resistance. We investigated the cellular mechanisms by which the intravenous anesthetics propofol and thiopental alter adenosine triphosphate-sensitive potassium (KATP+) channel relaxation in canine PV. The effects of KATP+ channel inhibition (glybenclamide), cyclooxygenase inhibition (indomethacin), nitric oxide synthase inhibition (L-NAME), and L-type voltage-gated Ca2+ channel inhibition (nifedipine) on vasorelaxation responses to levcromakalim (KATP+ channel activator) alone and in combination with the anesthetics were assessed. The maximal relaxation response to levcromakalim was attenuated by removing the endothelium and by L-NAME, but not by indomethacin. Propofol (10(-5), 3x10(-5), and 10(-4) M) and thiopental (10(-4) and 3x10(-4) M) each attenuated levcromakalim relaxation in endothelium-intact (E+) rings, whereas propofol (3x10(-5) and 10(-4) M) and thiopental (3x10(-4) M) attenuated levcromakalim relaxation in endothelium-denuded (E-) rings. In E+ rings, the anesthesia-induced attenuation of levcromakalim relaxation was decreased after pretreatment with L-NAME but not with indomethacin. In E-strips, propofol (10(-4) M) and thiopental (3x10(-4) M) inhibited decreases in tension and intracellular Ca2+ concentration ([Ca2+]i) in response to levcromakalim, and these changes were abolished by nifedipine. These findings indicate that propofol and thiopental attenuate the endothelium-dependent component of KATP+ channel-induced PV vasorelaxation via an inhibitory effect on the nitric oxide pathway. Both anesthetics also attenuate the PV smooth muscle component of KATP+ channel-induced relaxation by reducing the levcromakalim-induced decrease in [Ca2+]i via an inhibitory effect on L-type voltage-gated Ca2+ channels.  相似文献   

10.
The ATP-dependent K+ channel (KATP) was purified from the inner mitochondrial membrane and reconstituted into lipid bilayer membranes. KATP activity was inhibited by high concentrations of ATP and ADP, but activated by low concentrations (up to 200 microM) of ADP. p-Diethylaminoethylbenzoate (DEB) acted as a KATP opener: at micromolar concentrations, it reversed inhibition by ATP and ADP and it also prevented KATP rundown. Pelargonidine, extracted from flowers of Pelargonium, reduced spontaneous activity of KATP channels and diminished their potentiation by DEB. Their opposite action on KATP corresponded with their opposite redox properties in reactions with free radicals: DEB behaved as an electron donor, whereas pelargonidine acted as an electron acceptor. We hypothesize that thiol groups on mitoKATP are targets for redox-active ligans.  相似文献   

11.
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determined the effect of purine and pyrimidine magnesium nucleotides on TRPM7 currents and investigated the possible involvement of the channel's kinase domain in mediating them. We report here that physiological Mg.ATP concentrations can inhibit TRPM7 channels and strongly enhance the channel blocking efficacy of free Mg(2+). Mg.ADP, but not AMP, had similar, albeit smaller effects, indicating a double protection against possible Mg(2+) and Ca(2+) overflow during variations of cell energy levels. Furthermore, nearly all Mg-nucleotides were able to inhibit TRPM7 activity to varying degrees with the following rank in potency: ATP > TTP > CTP > or = GTP > or = UTP > ITP approximately free Mg(2+) alone. These nucleotides also enhanced TRPM7 inhibition by free Mg(2+), suggesting the presence of two interacting binding sites that jointly regulate TRPM7 channel activity. Finally, the nucleotide-mediated inhibition was lost in phosphotransferase-deficient single-point mutants of TRPM7, while the Mg(2+)-dependent regulation was retained with reduced efficacy. Interestingly, truncated mutant channels with a complete deletion of the kinase domain regained Mg.NTP sensitivity; however, this inhibition did not discriminate between nucleotide species, suggesting that the COOH-terminal truncation exposes the previously inaccessible Mg(2+) binding site to Mg-nucleotide binding without imparting nucleotide specificity. We conclude that the nucleotide-dependent regulation of TRPM7 is mediated by the nucleotide binding site on the channel's endogenous kinase domain and interacts synergistically with a Mg(2+) binding site extrinsic to that domain.  相似文献   

12.
H Bernardi  M Fosset  M Lazdunski 《Biochemistry》1992,31(27):6328-6332
Covalent labeling of nucleotide binding sites of the purified sulfonylurea receptor has been carried out with alpha-32P-labeled oxidized ATP. The main part of 32P incorporation is in the 145-kDa glycoprotein that has been previously shown to be the sulfonylurea binding protein (Bernardi et al., 1988). ATP and ADP protect against this covalent labeling with K0.5 values of 100 microM and 500 microM, respectively. Non-hydrolyzable analogs of ATP also inhibit 32P incorporation. Interactions between nucleotide binding sites and sulfonylurea binding sites have then been observed. AMP-PNP, a nonhydrolyzable analog of ATP, produces a small inhibition of [3H]glibenclamide binding (20-25%) which was not influenced by Mg2+. Conversely, ADP, which also produced a small inhibition (20%) in the absence of Mg2+, produced a large inhibition (approximately 80%) in the presence of Mg2+. This inhibitory effect of the ADP-Mg2+ complex was observed with a K0.5 value of 100 +/- 40 microM. All the results taken together indicate that ATP and ADP-Mg2+ binding sites that control the activity of KATP channels are both present on the same subunit that bears the receptors for antidiabetic sulfonylureas.  相似文献   

13.
KATP channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes 1, KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary, and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone, and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels and allowing K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes a decrease in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity.  相似文献   

14.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

15.
ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmacological agents, blockers like hypoglycemic sulfonylureas and openers like the hypotensive cromakalim and diazoxide. These agents act on the channel regulatory subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells and in some healthy tissues. Because these two ABC proteins both exhibit multispecific recognition properties, we have tested whether SUR ligands could be substrates of P-gp. Interaction with P-gp was assayed by monitoring ATPase activity of P-gp-enriched vesicles. The blockers glibenclamide, tolbutamide, and meglitinide increased ATPase activity, with a rank order of potencies that correlated with their capacity to block K(ATP) channels. P-gp ATPase activity was also increased by the openers SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide. Thus, these molecules bind to P-gp (although with lower affinities than for SUR) and are possibly transported by P-gp. Competition experiments among these molecules as well as with typical P-gp substrates revealed a structural similarity between drug binding domains in the two proteins. To rationalize the observed data, we addressed the molecular features of these proteins and compared structural models, computerized by homology from the recently solved structures of murine P-gp and bacterial ABC transporters MsbA and Sav1866. Considering the various residues experimentally assigned to be involved in drug binding, we uncovered several hot spots, which organized spatially in two main binding domains, selective for SR47063 and for glibenclamide, in matching regions of both P-gp and SUR.  相似文献   

16.
The differential responsiveness of (SUR1/K(IR)6.2)(4) pancreatic beta-cell versus (SUR2A/K(IR)6.2)(4) sarcolemmal or (SUR2B/K(IR)6. 0)(4) smooth muscle cell K(ATP) channels to K(+) channel openers (KCOs) is the basis for the selective prevention of hyperinsulinemia, myocardial infarction, and acute hypertension. KCO-stimulation of K(ATP) channels is a unique example of functional coupling between a transport ATPase and a K(+) inward rectifier. KCO binding to SUR is Mg-ATP-dependent and antagonizes the inhibition of (K(IR)6.0)(4) pore opening by nucleotides. Patch-clamping of matched chimeric human SUR1-SUR2A/K(IR)6.2 channels was used to identify the SUR regions that specify the selective response of sarcolemmal versus beta-cell channels to cromakalim or pinacidil versus diazoxide. The SUR2 segment containing the 12th through 17th predicted transmembrane domains, TMD12-17, confers sensitivity to the benzopyran, cromakalim, and the pyridine, pinacidil, whereas an SUR1 segment which includes TMD6-11 and the first nucleotide-binding fold, NBF1, controls responsiveness to the benzothiadiazine, diazoxide. These data are incorporated into a functional topology model for the regulatory SUR subunits of K(ATP) channels.  相似文献   

17.
The effects of nucleotides on the Ca2+-gated cation channel in sarcoplasmic reticulum (SR) vesicles were studied by measuring choline influx. The choline influx was measured by following the change in scattered light intensity using the stopped flow technique. ATP enhanced the Ca2+-induced choline influx. The activation followed a single-site titration curve with a dissociation constant of 1.0 +/- 0.5 mM, independent of the Ca2+ concentration. ATP seems to increase the pore radius or number of channels without affecting the gating mechanism of the Ca2+-gated cation channel. ADP, AMP, and adenine enhanced the choline transport in a manner similar to ATP, but cAMP, ITP, UTP, CTP, and GTP did not. The apparent dissociation constants and the maximal activations were as follows: ATP 1.0 mM, 28-fold; ADP 0.9 mM, 18-fold; AMP 0.6 mM, 7-fold, and adenine 0.4 mM, 4-fold. Adenine and AMP behaved as a competitive inhibitor for the activation by ATP. These results are consistent with the Ca2+-induced Ca2+ release observed in skinned muscle fiber and isolated SR.  相似文献   

18.
The CFTR chloride channel is regulated by phosphorylation by protein kinases, especially PKA, and by nucleotides interacting with the two nucleotide binding domains, NBD-A and NBD-B. Giant excised inside-out membrane patches from Xenopus oocytes expressing human epithelial cystic fibrosis transmembrane conductance regulator (CFTR) were tested for their chloride conductance in response to the application of PKA and nucleotides. Rapid changes in the concentration of ATP, its nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP), its photolabile derivative ATP-P3-[1-(2-nitrophenyl)ethyl]ester, or ADP led to changes in chloride conductance with characteristic time constants, which reflected interaction of CFTR with these nucleotides. The conductance changes of strongly phosphorylated channels were slower than those of partially phosphorylated CFTR. AMP-PNP decelerated relaxations of conductance increase and decay, whereas ATP-P3-[1-(2-nitrophenyl)ethyl]ester only decelerated the conductance increase upon ATP addition. ADP decelerated the conductance increase upon ATP addition and accelerated the conductance decay upon ATP withdrawal. The results present the first direct evidence that AMP-PNP binds to two sites on the CFTR. The effects of ADP also suggest two different binding sites because of the two different modes of inhibition observed: it competes with ATP for binding (to NBD-A) on the closed channel, but it also binds to channels opened by ATP, which might either reflect binding to NBD-A (i.e., product inhibition in the hydrolysis cycle) or allosteric binding to NBD-B, which accelerates the hydrolysis cycle at NBD-A.  相似文献   

19.
Activation of ATP-sensitive potassium (K(ATP)) channels can regulate smooth muscle function through membrane potential hyperpolarization. A critical issue in understanding the role of K(ATP) channels is the relationship between channel activation and the effect on tissue function. Here, we explored this relationship in urinary bladder smooth muscle (UBSM) from the detrusor by activating K(ATP) channels with the synthetic compounds N-(4-benzoylphenyl)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide (ZD-6169) and levcromakalim. The effects of ZD-6169 and levcromakalim on K(ATP) channel currents in isolated UBSM cells, on action potentials, and on related phasic contractions of isolated UBSM strips were examined. ZD-6169 and levcromakalim at 1.02 and 2.63 microM, respectively, caused half-maximal activation (K1/2) of K(ATP) currents in single UBSM cells (see Heppner TJ, Bonev A, Li JH, Kau ST, and Nelson MT. Pharmacology 53: 170-179, 1996). In contrast, much lower concentrations (K(1/2) = 47 nM for ZD-6169 and K1/2 = 38 nM for levcromakalim) caused inhibition of action potentials and phasic contractions of UBSM. The results suggest that activation of <1% of K(ATP) channels is sufficient to inhibit significantly action potentials and the related phasic contractions.  相似文献   

20.
ATP-sensitive potassium (KATP) channels in neuron and neuroendocrine cells consist of a pore-forming Kir6.2 and regulatory sulfonylurea receptor (SUR1) subunits, which are regulated by ATP and ADP. SNARE protein syntaxin 1A (Syn-1A) is known to mediate exocytic fusion, and more recently, to also bind and modulate membrane-repolarizing voltage-gated K+ channels. Here we show that Syn-1A acts as an endogenous regulator of KATP channels capable of closing these channels when cytosolic ATP concentrations were lowered. Botulinum neurotoxin C1 cleavage of endogenous Syn-1A in insulinoma HIT-T15 cells resulted in the increase in KATP currents, which could be subsequently inhibited by recombinant Syn-1A. Whereas Syn-1A binds both nucleotide-binding folds (NBF-1 and NBF-2) of SUR1, the functional inhibition of KATP channels in rat islet beta-cells by Syn-1A seems to be mediated primarily by its interactions with NBF-1. These inhibitory actions of Syn-1A can be reversed by physiologic concentrations of ADP and by diazoxide. Syn-1A therefore acts to fine-tune the regulation of KATP channels during dynamic changes in cytosolic ATP and ADP concentrations. These actions of Syn-1A on KATP channels contribute to the role of Syn-1A in coordinating the sequence of ionic and exocytic events leading to secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号