首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an extension of our analysis of the effect of halogenation on thiourea TRPV1 agonists, we have now modified selected 4-hydroxy(or 4-amino)-3-methoxyphenyl acetamide TRPV1 agonists by 5- or 6-halogenation on the aromatic A-region and evaluated them for potency for TRPV1 binding and regulation and for their pattern of agonism/antagonism (efficacy). Halogenation shifted the functional activity at TRPV1 toward antagonism with a greater extent of antagonism as the size of the halogen increased (I>Br>Cl), as previously observed for the thiourea series. The extent of antagonism was greater for halogenation at the 5-position than at the 6-position, in contrast to SAR for the thiourea series. In this series, compounds 55 and 75 showed the most potent antagonism, with K(i) (ant)=2.77 and 2.19nM, respectively, on rTRPV1 expressed in Chinese hamster ovary cells. The compounds were thus ca. 40-60-fold more potent than 6'-iodononivamide.  相似文献   

2.
A series of 5′-halogenated resiniferatoxin analogs have been investigated in order to examine the effect of halogenation in the A-region on their binding and the functional pattern of agonism/antagonism for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Halogenation at the 5-position in the A-region of RTX and of 4-amino RTX shifted the agonism of parent compounds toward antagonism. The extent of antagonism was greater as the size of the halogen increased (I > Br > Cl > F) while the binding affinities were similar, as previously observed for our potent agonists. In this series, 5-bromo-4-amino RTX (39) showed very potent antagonism with Ki (ant) = 2.81 nM, which was thus 4.5-fold more potent than 5′-iodo RTX, previously reported as a potent TRPV1 antagonist. Molecular modeling analyses with selected agonists and the corresponding halogenated antagonists revealed a striking conformational difference. The 3-methoxy of the A-region in the agonists remained free to interact with the receptor whereas in the case of the antagonists, the compounds assumed a bent conformation, permitting the 3-methoxy to instead form an internal hydrogen bond with the C4-hydroxyl of the diterpene.  相似文献   

3.
A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model.  相似文献   

4.
A series of 2-(3,5-substituted 4-aminophenyl)acetamide and propanamide derivatives were investigated as human TRPV1 antagonists. The analysis of the structure-activity relationship indicated that 2-(3,5-dihalo 4-aminophenyl)acetamide analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed improved potency compared to the corresponding propanamides. The most potent antagonist (36) exhibited potent and selective antagonism for hTRPV1 not only to capsaicin but also to NADA and elevated temperature; however, it only displayed weak antagonism to low pH. Further studies indicated that oral administration of antagonist 36 blocked the hypothermic effect of capsaicin in vivo but demonstrated hyperthermia at that dose. A docking study of 36 was performed in our established hTRPV1 homology model to understand its binding interactions with the receptor and to compare with that of previous antagonist 1.  相似文献   

5.
Structure-activity relationships for a series of phenoxypiperidine pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. The search for compounds with improved hERG and DAT selectivity without the formation of in vivo active metabolites identified 6-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-4,4-dimethyl-4,5-dihydro-2H-pyridazin-3-one 17b. Compound 17b met discovery flow criteria, demonstrated potent H(3)R functional antagonism in vivo in the rat dipsogenia model and potent wake activity in the rat EEG/EMG model at doses as low as 0.1 mg/kg ip.  相似文献   

6.
Protease-activated receptor (PAR(2)) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR(2) cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR(2)-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR(2), and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4(+/+) mice, intraluminal PAR(2) activating peptide (PAR(2)-AP) exacerbated VMR to graded CRD from 6-24 h, indicative of mechanical hyperalgesia. PAR(2)-induced hyperalgesia was not observed in TRPV4(-/-) mice. PAR(2)-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4(+/+) mice, but not from TRPV4(-/-) mice. The TRPV4 agonists 5',6'-epoxyeicosatrienoic acid and 4alpha-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR(2)-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR(2) increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR(2)-induced mechanical hyperalgesia and excitation of colonic afferent neurons.  相似文献   

7.
A series of alpha-substituted N-(4-tert-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea analogues have been investigated as TRPV1 receptor antagonists. alpha-Methyl substituted analogues showed potent and stereospecific antagonism to the action of capsaicin on rat TRPV1 heterologously expressed in Chinese hamster ovary cells. In particular, compounds 14 and 18, which possess the R-configuration, exhibited excellent potencies (respectively, K(i)=41 and 39.2 nM and K(i(ant))=4.5 and 37 nM).  相似文献   

8.
H(3)R structure-activity relationships for a new class of 4,5-dihydropyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. Modification of the 4,5-dihydropyridazinone moiety to block in vivo metabolism identified 4,4-dimethyl-6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-4,5-dihydro-2H-pyridazin-3-one 22 as a lead candidate demonstrating potent in vivo functional H(3)R antagonism in the rat dipsogenia model and robust wake promoting activity in the rat EEG/EMG model.  相似文献   

9.
A series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of 9 with our hTRPV1 homology model provided insight into its specific binding mode.  相似文献   

10.
Studies in young rodents have shown that the transient receptor potential vanilloid-1 (TRPV1) channel plays a suppressive role in the systemic inflammatory response syndrome (SIRS) by inhibiting production of tumor necrosis factor (TNF)α and possibly by other mechanisms. We asked whether the anti-inflammatory role of TRPV1 changes with age. First, we studied the effect of AMG517, a selective and potent TRPV1 antagonist, on aseptic, lipopolysaccharide (LPS)-induced SIRS in young (12 wk) mice. In agreement with previous studies, AMG517 increased LPS-induced mortality in the young. We then studied the effects of TRPV1 antagonism (AMG517 or genetic deletion of TRPV1) on SIRS in middle-aged (43–44 wk) mice. Both types of TRPV1 antagonism delayed and decreased LPS-induced mortality, indicating a reversal of the anti-inflammatory role of TRPV1 with aging. In addition, deletion of TRPV1 decreased the serum TNFα response to LPS, suggesting that the suppressive control of TRPV1 on TNFα production is also reversed with aging. In contrast to aseptic SIRS, polymicrobial sepsis (induced by cecal ligation and puncture) caused accelerated mortality in aged TRPV1-deficient mice as compared with wild-type littermates. The recovery of TRPV1-deficient mice from hypothermia associated with the cecal ligation and puncture procedure was delayed. Hence, the reversal of the anti-inflammatory role of TRPV1 found in the aged and their decreased systemic inflammatory response are coupled with suppressed defense against microbial infection. These results caution that TRPV1 antagonists, widely viewed as new-generation painkillers, may decrease the resistance of older patients to infection and sepsis.Key words: TRP channels, sepsis, systemic inflammation, endotoxin shock  相似文献   

11.
Studies in young rodents have shown that the transient receptor potential vanilloid-1 (TRPV1) channel plays a suppressive role in the systemic inflammatory response syndrome (SIRS) by inhibiting production of tumor necrosis factor (TNF)α and possibly by other mechanisms. We asked whether the anti-inflammatory role of TRPV1 changes with age. First, we studied the effect of AMG517, a selective and potent TRPV1 antagonist, on aseptic, lipopolysaccharide (LPS)-induced SIRS in young (12 wk) mice. In agreement with previous studies, AMG517 increased LPS-induced mortality in the young. We then studied the effects of TRPV1 antagonism (AMG517 or genetic deletion of TRPV1) on SIRS in middle-aged (43–44 wk) mice. Both types of TRPV1 antagonism delayed and decreased LPS-induced mortality, indicating a reversal of the anti-inflammatory role of TRPV1 with aging. In addition, deletion of TRPV1 decreased the serum TNFα response to LPS, suggesting that the suppressive control of TRPV1 on TNFα production is also reversed with aging. In contrast to aseptic SIRS, polymicrobial sepsis (induced by cecal ligation and puncture) caused accelerated mortality in aged TRPV1-deficient mice as compared with wild-type littermates. The recovery of TRPV1-deficient mice from hypothermia associated with the cecal ligation and puncture procedure was delayed. Hence, the reversal of the anti-inflammatory role of TRPV1 found in the aged and their decreased systemic inflammatory response are coupled with suppressed defense against microbial infection. These results caution that TRPV1 antagonists, widely viewed as new-generation painkillers, may decrease the resistance of older patients to infection and sepsis.  相似文献   

12.
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.  相似文献   

13.
The structure-activity relationships for the 'A-region' of N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea analogues have been investigated as TRPV1 receptor antagonists. The 2-halogen analogues showed enhanced antagonism compared to the prototype antagonist.  相似文献   

14.
Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on a N1-(isoquinolin-5-yl)-N2-phenylpyrrolidine-1,2-dicarboxamide platform that evolved from a 5-aminoisoquinoline urea lead. Advancing the SAR of this series led to the eventual identification of 3b, comprising a p-Br substituted phenyl. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, 3b displayed potent antagonism activated by capsaicin (IC50 = 0.084 μM) and protons (IC50 = 0.313 μM). In the preliminary analgesic and body temperature tests, 3b exhibited good efficacy in capsaicin-induced and heat-induced pain models and without hyperthermia side-effect. On the basis of its superior profiles, 3b could be considered as the lead candidate for the further development of antinociceptive drugs.  相似文献   

15.
On the basis of the previous lead N-4-t-butylbenzyl 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamide (3) as a potent TRPV1 antagonist, structure-activity relationships for the B (propanamide part) and C-region (4-t-butylbenzyl part) have been investigated for rTRPV1 in CHO cells. The B-region was modified with dimethyl, cyclopropyl and reverse amides and then the C-region was replaced with 4-substituted phenyl, aryl alkyl and diaryl alkyl derivatives. Among them, compound 50 showed high binding affinity with K(i)=21.5nM, which was twofold more potent than 3 and compound 54 exhibited potent antagonism with K(i(ant))=8.0nM comparable to 3.  相似文献   

16.
Our recent studies implicate the transient receptor potential vanilloid-1 (TRPV1) channel as a mediator of retinal ganglion cell (RGC) function and survival. With elevated pressure in the eye, TRPV1 increases in RGCs, supporting enhanced excitability, while Trpv1 -/- accelerates RGC degeneration in mice. Here we find TRPV1 localized in monkey and human RGCs, similar to rodents. Expression increases in RGCs exposed to acute changes in pressure. In retinal explants, contrary to our animal studies, both Trpv1 -/- and pharmacological antagonism of the channel prevented pressure-induced RGC apoptosis, as did chelation of extracellular Ca2+. Finally, while TRPV1 and TRPV4 co-localize in some RGC bodies and form a protein complex in the retina, expression of their mRNA is inversely related with increasing ocular pressure. We propose that TRPV1 activation by pressure-related insult in the eye initiates changes in expression that contribute to a Ca2+-dependent adaptive response to maintain excitatory signaling in RGCs.  相似文献   

17.
Our recent studies implicate the transient receptor potential vanilloid-1 (TRPV1) channel as a mediator of retinal ganglion cell (RGC) function and survival. With elevated pressure in the eye, TRPV1 increases in RGCs, supporting enhanced excitability, while Trpv1 -/- accelerates RGC degeneration in mice. Here we find TRPV1 localized in monkey and human RGCs, similar to rodents. Expression increases in RGCs exposed to acute changes in pressure. In retinal explants, contrary to our animal studies, both Trpv1 -/- and pharmacological antagonism of the channel prevented pressure-induced RGC apoptosis, as did chelation of extracellular Ca2+. Finally, while TRPV1 and TRPV4 co-localize in some RGC bodies and form a protein complex in the retina, expression of their mRNA is inversely related with increasing ocular pressure. We propose that TRPV1 activation by pressure-related insult in the eye initiates changes in expression that contribute to a Ca2+-dependent adaptive response to maintain excitatory signaling in RGCs.  相似文献   

18.
A series of indane-type acetamide and propanamide analogues were investigated as TRPV1 antagonists. The analysis of structure–activity relationship indicated that indane A-region analogues exhibited better antagonism than did the corresponding 2,3-dihydrobenzofuran and 1,3-benzodioxole surrogates. Among them, antagonist 36 exhibited potent and selective antagonism toward capsaicin for hTRPV1 and mTRPV1. Further, in vivo studies indicated that antagonist 36 showed excellent analgesic activity in both phases of the formalin mouse pain model and inhibited the pain behavior completely at a dose of 1 mg/kg in the 2nd phase.  相似文献   

19.
A series of 1,2,3,6-tetrahydropyridyl-4-carboxamides, exemplified by 6, have been synthesized and evaluated for in vitro TRPV1 antagonist activity, and in vivo analgesic activity in animal pain models. The tetrahydropyridine 6 is a novel TRPV1 receptor antagonist that potently inhibits receptor-mediated Ca2+ influx in vitro induced by several agonists, including capsaicin, N-arachidonoyldopamine (NADA), and low pH. This compound penetrates the CNS and shows potent anti-nociceptive effects in a broad range of animal pain models upon oral dosing due in part to its ability to antagonize both central and peripheral TRPV1 receptors. The SAR leading to the discovery of 6 is presented in this report.  相似文献   

20.
Structure-activity relationships for the A-region in a series of N-4-t-butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamides as TRPV1 antagonists have been investigated. Among them, the 3-fluoro analogue 54 showed high binding affinity and potent antagonism for both rTRPV1 and hTRPV1 in CHO cells. Its stereospecific activity was demonstrated with marked selectivity for the (S)-configuration (54S versus 54R). A docking study of 54S with our hTRPV1 homology model highlighted crucial hydrogen bonds between the ligand and the receptor contributing to its potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号