首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antagonists for the SH2 domain are regarded as novel therapeutic candidates for cancer, autoimmune disease, and chronic inflammatory disease. Previously, we identified rosmarinic acid (alpha-o-caffeoyl-3,4-dihydroxyphenyl-lactic acid; RosA) from Prunella vulgaris as an antagonist for the p56lck SH2 domain by screening natural products. RosA not containing phosphotyrosine surrogate had a considerable inhibitory activity for T-cell antigen receptor (TCR)-induced interleukin (IL)-2 expression, and subsequent T-cell proliferation in vitro cell assay. To investigate the structure-activity relationship of RosA and to identify a novel p56lck SH2 antagonist with more potent in vitro T-cell inhibitory activity, we synthesized several analogs of RosA by using rational design. All synthesized compounds were tested in vitro binding activity for the SH2 domain and in vitro T-cell inhibitory activity. All four hydroxyl groups of RosA were essential for binding with the p56lck SH2 domain and T-cell inhibitory activity. Unexpectedly, conformationally less constrained analogs 4 and 9 showed a more potent binding affinity for the SH2 domain than that of RosA, and chirality of the analog did not play an important role in protein binding. We successfully identified several RosA analogs with a more potent T-cell inhibitory activity than that of RosA. Overall results revealed important structural requirements of the p56lck SH2 antagonists for in vitro T-cell inhibitory activity and in vitro protein binding activity.  相似文献   

2.
Many of the Src-like tyrosine kinases are thought to participate in multiprotein complexes that modulate transmembrane signalling through tyrosine phosphorylation. We have used in vitro binding studies employing bacterially expressed glutathione S-transferase-p56lck fusion proteins and cell extracts to map regions on p56lck that are involved in binding to phosphatidylinositol 3'-kinase (PI3K). Deletions within the SH3 domain of p56lck abolished binding of PI3K activity from T-cell lysates, whereas deletion of the SH2 domain caused only a slight reduction in the level of PI3K activity bound to p56lck sequences. The binding of PI3K from T-cell extracts to p56lck was not blocked by antiphosphotyrosine antibodies, but p56lck-bound PI3K activity was sensitive to phosphatase treatment. The SH3 domain of p56lck also bound the majority of PI3K activity from uninfected chicken embryo fibroblasts. However, a drastically different binding specificity was observed with use of extracts of Rous sarcoma virus v-src-transformed cells, in which the majority of PI3K activity bound to the SH2 domain of p56lck in a phosphotyrosine-dependent manner. These results suggest that are two modes of PI3K binding to p56lck, and presumably to other Src-like tyrosine kinases. In one mode, PI3K from T cells or uninfected chicken embryo fibroblasts binds predominantly to the SH3 domain of p56lck. In the other mode, involving PI3K from Rous sarcoma virus-transformed cells, binding is largely phosphotyrosine dependent and requires the SH2 domain of p56lck.  相似文献   

3.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

4.
Starting from the tetrapeptide Ac-pYEEI-NHMe and using a structure-based approach, we have designed and synthesised a peptidomimetic ligand for p56(lck) SH2 domain containing a conformationally restricted replacement for the two glutamate residues. We have explored replacments for the isoleucine residue in the pY+3 pocket and thus identified 1-(R)-amino-3-(S)-indaneacetic acid as the most potent replacement. We also report the X-ray crystal structures of two of the antagonists.  相似文献   

5.
T cell-specific Src family tyrosine kinase, p56lck, plays crucial roles in T cell differentiation, activation, and proliferation. These multiple functions of p56lck are believed to be conducted through the protein-protein interactions with various cellular signaling proteins. To clarify the mechanisms through which p56lck contributes to T cell signaling, we identified the proteins binding to the Src homology 2 (SH2) domain of p56lck through a tyrosine phosphorylation-dependent yeast two-hybrid screening. Subsequent characterization of positive clones revealed the presence of a protein of 366 aa named Lad (Lck-associated adapter protein), which is a potential murine homologue of previously reported TSAd, a T cell-specific adapter protein. Lad contains several protein-protein interaction domains including a zinc-finger motif, an SH2 domain, a proline-rich SH3 binding motif, and several phosphotyrosine sites. Furthermore, Lad was tyrosine phosphorylated and associated with p56lck in vivo and redistributed from cytoplasm to the plasma membrane in a T cell activation-dependent manner. Moreover in T cells, IL-2 promoter activity was enhanced upon coexpression of Lad but was inhibited by the coexpression of antisense Lad RNA. These characteristics of Lad suggest that Lad play an essential role as an adapter protein in p56lck-mediated T cell signaling.  相似文献   

6.
7.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

8.
Our previous studies demonstrated that Csk homologous kinase (CHK) acts as a negative growth regulator of human breast cancer through inhibition of ErbB-2/neu-mediated Src family kinase activity (Bougeret, C., Jiang, S., Keydar, I., and Avraham, H. (2001) J. Biol. Chem. 276, 33711-33720. The interaction between the CHK SH2 domain and Tyr(P)(1248) of the ErbB-2 receptor has been shown to be specific and critical for CHK function. In this report, we investigated whether the interaction of the CHK SH2 domain and ErbB-2 is directly related to the inhibition of heregulin-stimulated Src kinase activity. We constructed three CHK SH2 domain binding mutants: G129R (enhanced binding), R147K (inhibited binding), and R147A (disrupted binding). NMR spectra for the domains of each construct were used to evaluate their interaction with a Tyr(P)(1248)-containing ErbB-2 peptide. G129R showed enhanced binding to ErbB-2, whereas binding was completely disrupted by R147A. The enhanced binding mutant showed chemical shift changes at the same residues as wild-type CHK, indicating that this mutant has the same binding characteristics as the wild-type protein. Furthermore, inhibition of heregulin-stimulated Src kinase activity was markedly diminished by R147A, whereas G129R-mediated inhibition was stronger as compared with wild-type CHK. These results indicate that the specific interaction of CHK and ErbB-2 via the SH2 domain of CHK is directly related to the growth inhibitory effects of CHK. These new CHK high affinity binding constructs may serve as good candidates for inhibition of the ErbB-2/Src transduction pathway in gene therapy studies in breast cancer.  相似文献   

9.
Thy-1, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein expressed at high levels on thymocytes, has been implicated in positive and negative signal transduction. We show that Thy-1 associates with a protein of 85--90 kDa, which is prominently phosphorylated in vitro as well as in vivo following the stimulation of thymocytes with pervanadate. pp85--90 is not identical to known proteins that are phosphorylated following T cell activation. The SH2 domains of fyn, csk, phosphatidylinositol 3'-kinase, rasGAP, vav and lck bind to pp85--90 with varying affinities. The SH2 domains of ZAP70, SHP-1 and PLC gamma 1 and the SH3 domains of lck, vav and HS1 did not bind to pp85--90. The molecular weight, iso-electric point, efficient phosphorylation by fyn and lck and preferential binding to the SH2 domain of fyn compared to that of lck indicate that Thy-1-associated pp85-90 may be identical to a recently cloned, fyn-associated transmembrane adaptor protein, PAG-85.  相似文献   

10.
A sequence derived from the epithelial receptor tyrosine kinase Ros (pY2267) represents a high‐affinity binding partner for protein tyrosine phosphatase SHP‐1 and was recently used as lead structure to analyze the recognition requirements for the enzyme's N‐SH2 domain. Here, we focused on a set of peptides comprising C‐terminally extended linear and conformationally constrained side chain‐bridged cyclic N‐SH2 ligands based on the consensus sequence LxpYhxh(h/b)(h/b) (x = any amino acid, h = hydrophobic, and b = basic residue). Furthermore, the bivalent peptides described were designed to modulate the activity of SHP‐1 through binding to both, the N‐SH2 domain as well as an independent binding site on the surface of the catalytic domain (PTP domain). Consistent with previous experimental findings, surface plasmon resonance experiments revealed dissociation constants of most compounds in the low micromolar range. One peptide, EGLNpYc[KVD]MFPAPEEE? NH2, displayed favorable binding affinity, but reduced ability to stimulate SHP‐1. Docking experiments revealed that the binding of this ligand occurs in binding mode I, recently described to lead to an inhibited activation of SHP‐1. In summary, results presented in this study suggest that inhibitory N‐SH2 ligands of SHP‐1 may be obtained by designing bivalent compounds that associate with the N‐SH2 domain and simultaneously occupy a specific binding site on the PTP domain. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 102–112, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
The catalytic function of Src-related tyrosine protein kinases is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue. Recent studies suggest that this inhibitory event is not the result of autophosphorylation but that it is mediated by another cytoplasmic tyrosine protein kinase, termed p50csk. In this report, we have evaluated the processes regulating the extent of phosphorylation of the inhibitory carboxy-terminal tyrosine residue of p56lck, a lymphocyte-specific member of the Src family. By analyzing kinase-defective variants of p56lck expressed in mouse NIH 3T3 cells, we have found that the noncatalytic Src homology 2 (SH2) domain, but not the SH3 sequence or the sites of Lck myristylation and autophosphorylation, is necessary for stable phosphorylation at the carboxy-terminal tyrosine 505. Further studies in which Lck and Csk were coexpressed in S. cerevisiae indicated that the absence of the SH2 domain did not affect the ability of Csk to phosphorylate p56lck at tyrosine 505. However, we observed that incubation of cells with the tyrosine phosphatase inhibitor pervanadate restored the tyrosine 505 phosphorylation of Lck polypeptides devoid of the SH2 motif. Additionally, the presence of the SH2 sequence protected tyrosine 505 from in vitro dephosphorylation by the hemopoietic tyrosine protein phosphatase CD45. Taken together, these findings raised the possibility that the SH2 motif contributes to the physiological suppression of the catalytic function of p56lck at least in part through its ability to stabilize phosphorylation at the inhibitory site.  相似文献   

12.
Inhibition of p56(lck) tyrosine kinase by isothiazolones   总被引:1,自引:0,他引:1  
Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.  相似文献   

13.
Several styryl-based compounds were evaluated for their capacity to act as inhibitors of the non-receptor tyrosine protein kinase p56lck. Our results demonstrate that alpha-cyanocinnamamide compounds can inhibit both the in vitro tyrosine autophosphorylation of p56lck as well as p56lck phosphorylation of exogenous substrates. Compound 67B-83-A was found to inhibit p56lck protein kinase activity with a calculated IC50 of 7 to 10 microM. This compound did not significantly inhibit the tyrosine protein kinase activity of the epidermal growth factor receptor and was found to be a less effective tyrosine protein kinase inhibitor for other members of the src family of protein kinases.  相似文献   

14.
The tyrosine protein kinase p56lck transduces signals important for antigen-induced T-cell activation. In transgenic mice, p56lck is oncogenic when overexpressed or expressed as a mutant, catalytically activated enzyme. In humans, the LCK gene is located at the breakpoint of the t(1;7)(p34;q34) chromosomal translocation. This translocation positions the beta T-cell receptor constant region enhancer upstream of the LCK gene without interrupting the LCK coding sequences, and a translocation of this sort occurs in both the HSB2 and the SUP-T-12 T-cell lines. We have found that, although the level of the p56lck protein in HSB2 cells is elevated approximately 2-fold in comparison with that in normal T-cell lines, total cellular tyrosine protein phosphorylation is elevated approximately 10-fold. Increased levels of phosphotyrosine in HSB2 cells resulted from mutations in the LCK gene that activated its function as a phosphotransferase and converted it into a dominant transforming oncogene. The oncogenic p56lck in HSB2 cells contained one amino acid substitution within the CD4/CD8-binding domain, two substitutions in the kinase domain, and an insertion of Gln-Lys-Pro (QKP) between the SH2 and kinase domains. In NIH 3T3 fibroblasts, three of these mutations cooperated to produce the fully oncogenic form of this p56lck variant. These results suggest that mutation of LCK may contribute to some human T-cell leukemias.  相似文献   

15.
The Stat3 SH2 domain is essential for its activation, and development of a potent SH2 inhibitor will be therapeutically valuable in treating cancers with constant Stat3 activation. We report here the identification of the catechol (1,2-dihydroxybenzene) structural moiety by virtual screening as a Stat3 SH2 inhibitor. The catechol compound docked to the Stat3 SH2 domain in computer modeling forms hydrogen bonds with the conserved pTyr-interacting amino acids. In the biochemical assay, a catechol-containing compound, but not the hydroxyl group-acetalized analogue, was able to inhibit Stat3 DNA-binding activity. Furthermore, the catechol compound was demonstrated to compete with pTyr peptides in binding to the Stat3 SH2 domain, suggesting that the catechol moiety is a pTyr bioisostere and may potentially be used for designing cell-permeable SH2 inhibitors. In our preliminary effort, we also demonstrated that the potency of catechol compound as Stat3 SH2 inhibitors could be improved by modifying the non-catechol part of the compound structure.  相似文献   

16.
Protein tyrosine kinase 6 (PTK6) is composed of SH3, SH2, and Kinase domains, with a linker region (Linker) between the SH2 and Kinase domains. Here, we report the structural basis of the SH3-Linker interaction that results in auto-inhibition of PTK6. The solution structures of the SH3 domain and SH3/Linker complex were determined by NMR spectroscopy. The structure of the SH3 domain forms a conventional β-barrel with two β-sheets comprised of five β-strands. However, the molecular topology and charge distribution of PTK6-SH3 slightly differs from that of the other SH3 domains. The structure of the N-terminal Linker within the complex showed that the proline-rich region (P175-P187) of the Linker forms a compact hairpin structure through hydrophobic interactions. The structure of the SH3/Linker complex revealed intra-molecular interaction between the amino acid pairs R22/E190, W44/W184, N65/P177, and Y66/P179. Mutations in PTK6 at R22, W44, N65, and Y66 residues in the SH3 domain increased catalytic activity compared with wild-type protein, implying that specific interactions between hydrophobic residues in the proline-rich linker region and hydrophobic residues in the SH3 domain are mainly responsible for down-regulating the catalytic activity of PTK6.  相似文献   

17.
Src homology-2 (SH2) domains are noncatalytic motifs containing approximately 100 amino acid residues that are involved in intracellular signal transduction. The phosphotyrosine-containing tetrapeptide pTyr-Glu-Glu-Ile (pYEEI) binds to Src SH2 domain with high affinity (K(d)=100 nM). The development of five classes of tetrapeptides as inhibitors for the Src SH2 domain is described. Peptides were prepared via solid-phase peptide synthesis and tested for affinity to Src SH2 domain using a fluorescence polarization based assay. All of the N-terminal substituted pYEEI derivatives (class II) presented binding affinity (IC(50)=of 2.7-8.6 microM) comparable to pYEEI (IC(50)=6.5 microM) in this assay. C-Terminal substituted pYEEI derivatives (class III) showed a lower binding affinity with IC(50) values of 34-41 microM. Amino-substituted phenylalanine derivatives (class IV) showed weak binding affinities (IC(50)=16-153 microM). Other substitutions on phenyl ring (class I) or the replacement of the phenyl ring with other cyclic groups (class V) dramatically decreased the binding of tetrapeptides to Src SH2 (IC(50)>100 microM). The ability of pYEEI and several of the tetrapeptides to inhibit the growth of cancer cells were assessed in a cell-based proliferation assay in human embryonic kidney (HEK) 293 tumor cells. The binding affinity of several of tested compounds against Src SH2 domain correlates with antiproliferative activity in 293T cells. None of the compounds showed any significant antifungal activity against Candida albicans ATCC 14053 at the maximum tested concentration of 10 microM. Overall, these results provided the structure-activity relationships for some FEEI and YEEI derivatives designed as Src SH2 domain inhibitors.  相似文献   

18.
Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.  相似文献   

19.
A conserved noncatalytic domain SH2 (for src homology region 2) is located immediately N terminal to the kinase domains of all cytoplasmic protein-tyrosine kinases. We found that the wild-type v-fps SH2 domain stimulated the enzymatic activity of the adjacent kinase domain 10-fold and functioned as a powerful positive effector of catalytic and transforming activities within the v-fps oncoprotein (P130gag-fps). Partial proteolysis of P130gag-fps and supporting genetic data indicated that the v-fps SH2 domain exerts its effect on catalytic activity through an intramolecular interaction with the kinase domain. Amino acid alterations in the SH2 domain that impaired kinase function interfered with association of the SH2 domain with the kinase domain. Deletion of a conserved octapeptide motif converted the v-fps SH2 domain from an activator to an inhibitor of tyrosine kinase activity. This latent inhibitory activity of v-fps SH2 has functional implications for phospholipase C-gamma and p21ras GTPase-activating protein, both of which have two distinct SH2 domains suggestive of complex regulation. In addition to regulating the specific activity of the kinase domain, the SH2 domain of P130gag-fps was also found to be required for the tyrosine phosphorylation of specific cellular proteins, notably polypeptides of 124 and 62 kilodaltons. The SH2 domain therefore appears to play a dual role in regulation of kinase activity and recognition of cellular substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号