首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from 1,2,4-tri-O-acetyl-3,6-anhydro-alpha-d-galactopyranose, 4-O-acetyl-3,6-anhydro-1,2-O-(1-cyanoethylidene)-alpha-d-galactopyranose (7) was synthesized by treatment with cyanotrimethylsilane. Additionally, 3,4-di-O-acetyl-1,2-O-(1-cyanoethylidene)-6-O-tosyl-alpha-d-galactopyranose was prepared from the corresponding bromide and both cyanoethylidene derivatives were used as donors in glycosylation reactions. The coupling with benzyl 2,4,6-tri-O-acetyl-3-O-trityl-beta-d-galactopyranoside provided exclusively the beta-linked disaccharides in approximately 30% yield. The more reactive methyl 2,3-O-isopropylidene-4-O-trityl-alpha-l-rhamnopyranoside gave with donors 3 and 7 the corresponding disaccharides in nearly 60% yield. Furthermore, the synthesis of 3,6-anhydro-4-O-trityl-1,2-O-[1-(endo-cyano)ethylidene]-alpha-d-galactopyranose, which can be used as a monomer for polycondensation reaction is described.  相似文献   

2.
Opening of racemic epoxide (3) with (3S)- or (3R)-dimethyl-3-(dimethyl-t-butylsilyloxy)oct-1-ynyl aluminum gave two regioisomers, which were separated chromatographically. The separated regioisomers, themselves mixtures of chromatographically inseparable diastereoisomers, were converted into their dicobalthexacarbonyl complexes, which were easily resolved and isolated by chromatography. The individual diastereoisomers were deprotected to give bicyclo[3.2.0]heptan-3-ones, whose absolute stereochemistry was assigned using circular dichroism. One of these compounds, (1R,2R,3S,5R,3'S)-3-(3'-hydroxyoct-1'-ynyl)-bicyclo[3.2.0]++ +heptan-2-ol-6- oximinoacetic acid (11a) was 4.5 times more potent than PGE1 in inhibiting the ADP-induced aggregation of human platelets. The next most potent compound in this series was the "ent-15-epi" compound (11b), which was 0.034 times the potency of PGE1 in the platelet aggregation assay.  相似文献   

3.
The synthesis of a dithiolester analog of phosphatidylcholine, 1,2-bis(heptanoylthio)-1,2-dideoxy-sn-glycerol-3-phosphocholine (thio PC), is described. Starting with 1-trityl-sn-glycerol (prepared from D-mannitol), tosylation followed by displacement with potassium methyl xanthate gave a trithiocarbonate. Reductive cleavage of the latter gave a 1,2-dithiol which was then acylated, detritylated, and esterified with choline phosphate. Hydrolysis of thio PC by phospholipase A2 (Naja naja) indicated 95% chiral purity. The rate of hydrolysis as a function of substrate concentration showed a sharp increase at about 0.17 mM, the critical micellar concentration of the lipid. A spectrophotometric assay of phospholipase A2 (by measurement of released thiol groups in the presence of dithionitrobenzoic acid) was quite sensitive. As little as 1 ng of enzyme was detected, representing a rate of about 0.2 nmol of substrate hydrolyzed per min.  相似文献   

4.
The effects of bacteriorhodopsin analogues and the analogues of a bacteriorhodopsin mutant (D96N) on the lateral organization of lipids have been investigated with lipid species with a variety of acyl chain lengths. The analogues, obtained by regeneration of bacterioopsin or mutant opsin with 14-, 12-, 10-, or 8-fluororetinal, were reconstituted with 1,2-didodecanoyl-sn-glycero-3-phosphocholine, 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine, 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine. The phase behavior of the protein-lipid systems was investigated at different temperatures and different protein/lipid molar ratios by analyzing the fluorescence and phase properties of the 1-acyl-2-[8-(2-anthroyl)octanol]-sn-glycero-3-phosphocholine probe. The (8,10,12)-bacteriorhodopsins had a similar effect on the lipid phase transition to that induced by native bacteriorhodopsin: a rigidifying effect on the three shorter lipid species and a fluidifying effect on the longest-chain lipids used. The substitution of retinal with 14-fluororetinal resulted in much stronger effects of the protein on the lipids: a more pronounced up-shift of the lipid phase transition temperature, a rigidifying effect on all the lipids used, and an elongation of the distance over which the hydrophobic thickness of the lipid bilayer was perturbed by the protein. Evidence was provided that retinal contributed to the long-range protein-lipid interactions in bacteriorhodopsin-phosphatidylcholine vesicles. The extent of this contribution was dependent on the retinal structure in close vicinity to the Shiff base and on the compactness of the protein structure.  相似文献   

5.
The metabolism of platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine) and 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol was studied in cultures of human umbilical vein endothelial cells. Human endothelial cells deacetylated 1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine to the corresponding lyso compound (1-[1,2-3H]alkyl-2-lyso-sn-glycerol-3-phosphocholine) and a portion was converted to 1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine. Lyso platelet activating factor (lyso-PAF) (1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine) was detected in the media very early during the incubation and the amount remained higher than the level of the lyso product observed in the cells. Cellular levels of 1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine were significantly higher than the acylated product (1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine) at all times during the 60-min incubation period, which suggests that the ratio of acetylhydrolase to acyltransferase activities is greater in endothelial cells than in most other cells. When endothelial cells were incubated with 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol, a known precursor of PAF, 1-[1,2-3H]alkyl-sn-glycerol was the major metabolite formed (greater than 95% of the 3H-labeled metabolites during 20- and 40-min incubations). At least a portion of the acetate was removed from 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol by a hydrolytic factor released from the endothelial cells into the medium during the incubations. Only negligible amounts of the total cellular radioactivity (0.2%) was incorporated into platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine); therefore, it is unlikely that the previously observed hypotensive activity of 1-alkyl-2-acetyl-sn-glycerols can be explained on the basis of the conversion to platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by endothelial cells. Results of this investigation indicate that endothelial cells play an important role in PAF catabolism. Undoubtedly, the endothelium is important in the regulation of PAF levels in the vascular system.  相似文献   

6.
The interaction of cationic pentalysine with phospholipid membranes was studied by using phosphorus and deuterium Nuclear Magnetic Resonance (NMR) of headgroup deuterated dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS). In the absence of pentalysine, some of the deuterium and phosphorus spectra of DMPC/DMPS 5:1 (m:m) membranes gave lineshapes similar to those of partially-oriented bilayers with the planes of the bilayers being parallel to the magnetic field. The deuterium NMR data show that the quadrupolar splittings of the deuterated methylenes of the DMPC headgroup are not affected by adsorption of pentalysine on the PC/PS membranes. By contrast, the pentalysine produces significant changes in the quadrupolar splittings of the negatively charged DMPS headgroup. The results are discussed in relation to previous 2H NMR investigations of phospholipid headgroup perturbations arising from bilayer interaction with cationic molecules.Abbreviations NMR nuclear magnetic resonance - DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine - DMPS 1,2-dimyristoyl-sn-glycero-3-phosphoserine - POPC 1-palmitoyl, 2-oleyl-sn-glycero-3-phosphocholine - POPG 1-palmitoyl-2-oleyl-sn-glycero-3-phosphoglycerol - PC phosphatidylcholine - PS phosphatidyl serine - PG phosphatidylglycerol - HEPES N-(2-hydroxy-ethyl)piperazine-N-2-ethanesulfonic acid - TRIS tris-(hydroxymethyl)aminoethane - EDTA ethylenediamine-tetra-acetic acid  相似文献   

7.
We describe the interaction of Crotalus atrox-secreted phospholipase A2 (sPLA2) with giant unilamellar vesicles (GUVs) composed of single and binary phospholipid mixtures visualized through two-photon excitation fluorescent microscopy. The GUV lipid compositions that we examined included 1-palmitoyl-2-oleoyl-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (above their gel-liquid crystal transition temperatures) and two well characterized lipid mixtures, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):DMPC (7:3) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) (1:1) equilibrated at their phase-coexistence temperature regime. The membrane fluorescence probes, 6-lauroyl-2-(dimethylamino) napthalene, 6-propionyl-2-(dimethylamino) naphthalene, and rhodamine-phosphatidylethanolamine, were used to assess the state of the membrane and specifically mark the phospholipid domains. Independent of their lipid composition, all GUVs were reduced in size as sPLA2-dependent lipid hydrolysis proceeded. The binding of sPLA2 was monitored using a fluorescein-sPLA2 conjugate. The sPLA2 was observed to associate with the entire surface of the liquid phase in the single phospholipid GUVs. In the mixed-lipid GUV's, at temperatures promoting domain coexistence, a preferential binding of the enzyme to the liquid regions was also found. The lipid phase of the GUV protein binding region was verified by the introduction of 6-propionyl-2-(dimethylamino) naphthalene, which partitions quickly into the lipid fluid phase. Preferential hydrolysis of the liquid domains supported the conclusions based on the binding studies. sPLA2 hydrolyzes the liquid domains in the binary lipid mixtures DLPC:DAPC and DMPC:DMPE, indicating that the solid-phase packing of DAPC and DMPE interferes with sPLA2 binding, irrespective of the phospholipid headgroup. These studies emphasize the importance of lateral packing of the lipids in C. atrox sPLA2 enzymatic hydrolysis of a membrane surface.  相似文献   

8.
Liu J  Conboy JC 《Biophysical journal》2005,89(4):2522-2532
Sum-frequency vibrational spectroscopy (SFVS) is used to measure the intrinsic rate of lipid flip-flop for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in planar-supported lipid bilayers (PSs). Asymmetric PSLBs were prepared using the Langmuir-Blodgett/Langmuir-Schaefer method by placing a perdeuterated lipid analog in one leaflet of the PSLB. SFVS was used to directly measure the asymmetric distribution of the native lipid within the membrane by measuring the decay in the CH3 v(s) intensity at 2875 cm(-1) with time and as a function of temperature. An average activation energy of 220 kJ/mol for the translocation of DMPC, DPPC, and DSPC was determined. A decrease in alkyl chain length resulted in a substantial increase in the rate of flip-flop manifested as an increase in the Arrhenius preexponential factor. The effect of lipid labeling was investigated by measuring the exchange of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n,n-Dimethyl-n-(2',2',6',6'-tetramethyl-4'-piperidyl) (TEMPO-DPPC). The rate of TEMPO-DPPC flip-flop was an order-of-magnitude slower compared to DPPC. An activation energy of 79 kJ/mol was measured which is comparable to that previously measured by electron spin resonance. The results of this study illustrate how SFVS can be used to directly measure lipid flip-flop without the need for a fluorescent or spin-labeled lipid probe, which can significantly alter the rate of lipid translocation.  相似文献   

9.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 micromol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  相似文献   

10.
1. A lamellar body-enriched fraction was isolated from whole lung homogenates of mouse lung and its contamination with microsomes, mitochondria, and cytosol protein assessed by marker enzyme analyses. 2. By measuring the activity of cholinephosphotransferase (EC 2.7.8.2) in varying amounts of microsomes in the presence and absence of a fixed quantity of lamellar bodies, it could be demonstrated unequivocally that lamellar bodies of mouse lung lack the capacity to synthesize phosphatidylcholine de novo. 3. A similar approach allowed the conclusion that lamellar bodies of mouse lung do not contain lysophosphatidylcholine acyltransferase (EC 2.3.1.23) and lysophosphatidylcholine:lysophosphatidylcholine acyltransferase (EC 2.3.1.--), enzymes which play a putative role in the formation of pulmonary 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine. The activities of these enzymes observed in lamellar body fractions could be attributed completely to contaminating microsomes and cytosol respectively. 4. Lamellar bodies contributed to the activity of microsomal lysophosphatidylcholine acyltransferase by a cooperative effect. The possible role of this cooperation in the biosynthesis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is discussed.  相似文献   

11.
We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.  相似文献   

12.
A stereocontrolled route to 1-palmitoyl-2-O-hexadecyl-sn-glycero-3-phosphocholine from (R)-glycidyl tosylate is described. This method gives very high enantioselectivity (93-96% enantiomeric excess) and can be used to prepare 3-acyl-2-O-alkyl-sn-glycero-1-phosphocholines from (S)-glycidyl tosylate. The key step is the preparation of 1-O-benzyl-sn-glycerol 3-tosylate by the boron trifluoride etherate catalyzed regio- and stereo-specific opening of the epoxide ring with excess benzyl alcohol. The alkyl group is introduced using alkyl trifluoromethanesulfonate in the presence of excess 2,6-di-tert-butyl-4-methylpyridine. Debenzylation gives 2-O-alkyl-sn-glycerol 3-arenesulfonate, which is acylated and then converted into the phosphocholine. The use of chiral glycidyl derivatives as starting materials for the synthesis of glycerophospholipids is discussed.  相似文献   

13.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

14.
15.
Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the increase by 0.5 degrees C for DPPC observed in the presence of 20% (w/w) PEG. At a given PEG concentration maximal increase in IE/IM (correlating to the extent of segregation of PPDPC in the different lipid matrices) decreased in the sequence 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) > DPPC > DMPC > SOPC > POPC, whereas no evidence for phase separation in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) LUV was observed (Lehtonen and Kinnunen, 1994, Biophys. J. 66: 1981-1990). Our results indicate that PEG-induced dehydration of liposomal membranes provides the driving force for the segregation of the pyrene lipid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of acyl-chain length of phospholipid on the membrane permeabilizing activity of amphotericin B (AmB) was examined using egg phosphatidylcholine (eggPC) liposomes containing 5% or 20% phosphatidylcholine with various lengths of fatty acyl chains from C(10) to C(18); 1,2-dicapryloyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The membrane activity of AmB was evaluated by two methods; the drug was added to a liposome suspension (added-via-aqua), or mixed with lipids prior to liposome preparation (mixed-with-lipid). In both cases, K(+) influx by AmB was measured as pH change inside liposomes by 31P-NMR. The C(10) and C(12) acyl phospholipids markedly enhanced the activity of AmB, the C(14) and C(16) lipids virtually showed no effect, and the C(18) lipid was inhibitory to the AmB's action. Clear distinction between the C(12) and C(14) lipids, which differ only in acyl chains by two carbons, implies that molecular interaction between phospholipid and AmB is partly due to the matching of their hydrophobic length.  相似文献   

17.
Asymmetric hydrolysis of a homologous range of straight chain 1,2-epoxyalkanes was achieved using whole cells of Chryseomonas luteola. Depending on the chain length, hydrolyses of the racemic epoxides afforded optically active epoxides and diols with varying degrees of optical purity. In the case of 1,2-epoxyoctane, the enantiomeric excess of the remaining (S)-epoxide and formed (R)-diol was excellent (ees > 98% and eep = 86%). This is the first report of a bacterial epoxide hydrolase with such unusual enantioselectivity for terminal mono-substituted epoxides bearing no directing group on the chiral C-2 carbon. Benzyl glycidyl ether and the 2,2-disubstituted epoxide, 2-methyl-1,2-epoxyheptane, were hydrolysed, but no enantioselectivity was observed. © Rapid Science Ltd. 1998  相似文献   

18.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, beta-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (R(t,sat)) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, beta-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

19.
Four diacetylenic phosphatidylcholines (PC's) have been synthesized and the structures of bilayers of these lipids have been determined at low resolution by low-angle X-ray diffraction. The PC's all have 18-carbon chains but differ with respect to the ether/ester linkage at the sn-1 and sn-2 positions and the relative position of the diacetylene moiety: diester-PC (1): 1,2-bis(octadeca-4',6'-diynoyl)-sn-glycero-3-phosphocholine diester-PC (2): 1-(octadeca-4',6'-diynoyl)-2-(octadeca-5',7'-diynoy l)-sn- glycero-3-phosphocholine diester-PC (3): 1,2-bis(octadeca-8',10'-diynoyl)-sn-glycerol-3-phosphocholin e diether-PC (4): 1-O-(octadeca-4',6'-diynyl)-2-O-(octadeca-5",7"-din yl)-sn- glycero-3-phosphocholine Only (1) exhibits the typical bilayer profile, whereas (2), (3) and (4) show evidence of interdigitation and/or significant disorder. Only (1) polymerized effectively upon illumination with 254 nm light, turning deep blue in seconds, indicating the formation of long, well-ordered polydiacetylenic structures. Liposomes of these derivatives were tested for permeability by osmotic swelling. Polymerized liposomes of (1) underwent osmotic swelling with urea, glycerol, and acetamide more rapidly than did liposomes of stearoyl-oleoyl-PC, but the initial rates of osmotic swelling of polymerized liposomes of (1) were 3-10-times lower than those of unpolymerized liposomes of (1). Blue polymerized multilayer samples of (1) exhibited an irreversible thermochromic transition to red at approx. 40 degrees C. Differential scanning calorimetry with liposome suspensions of (1) revealed an endotherm at 28.3 degrees C with a transition enthalpy of 40 J/g. PC (1) is a potentially useful diacetylenic lipid which exhibits facile, complete polymerization and a bilayer thickness comparable to that of biomembrane lipids.  相似文献   

20.
Metabolism of the proximate carcinogen trans-3,4-dihydroxy-3,4-dihydrodibenz[c,h]acridine has been examined with rat liver enzymes. The dihydrodiol is metabolized at a rate of 2.4 nmol/nmol of cytochrome P450 1A1/min with microsomes from 3-methylcholanthrene-treated rats, a rate more than 10-fold higher than that observed with microsomes from control or phenobarbital-treated rats. Major metabolises consisted of a diastereomeric pair of bis-dihydrodiols (68-83%), where the new dihydrodiol group has been introduced at the 8,9-position, tetraols derived from bay region 3,4-diol-1,2-epoxides (15-23%), and a small amount of a phenolic dihydrodiol(s) where the new hydroxy group is at the 8,9-position of the substrate. A highly purified monooxygenase system reconstituted with cytochrome P450 1A1 and epoxide hydrolase (17 nmol of metabolites/nmol of cytochrome P450 1A1/min) gave a metabolite profile very similar to that observed with liver microsomes from 3-methylcholanthrene-treated rats. Study of the stereoselectivity of these microsomes established that the (+)-(3S,4S)-dihydrodiol gave mainly the diol epoxide-1 diastereomer, in which the benzylic 4-hydroxyl group and epoxide oxygen are cis. The (-)-(3R,4R)-dihydrodiol gave mainly diol epoxide-2 where these same groups are trans. The major enantiomers of the diastereomeric bis-dihydrodiols are shown to have the same absolute configuration at the 8,9-position. Correlations of circular dichroism spectra suggest this configuration to be (8R,9R). The (8R,9S)-oxide may be their common precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号