首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A clinostat achieves gravity compensation by providing circular rotation with uniform speed, about a horizontal axis. The dynamics of an assumed, discrete and free-moving subcellular gravity receptor, subject to clinostat rotation, is analyzed. The results imply that there is an optimum rotation rate; higher speeds result in circular motions with diameters more comparable to thermal noise fluctuations, but with greater linear velocities due to increasing centrifugal forces. An optimizing function is proposed. The nucleolus and mitochondrion is chosen as a gravity receptor for illustrating the use of this theory. The characteristics of their clinostat-induced motions are incorporated with experimental results on Avena plant shoots in an illustrative example.  相似文献   

2.
If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it should make the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological end-points of development the results depended on the magnitude of the applied g-force. Therefore, gravity compensation by the clinostat was incomplete. This conclusion is in agreement with results of satellite experiments which are reviewed.  相似文献   

3.
The severe epinasty and other symptoms developed by clinostated leafy plants could be responses to gravity compensation and/or the mechanical stresses of leaf flopping. Epinasty in cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) is delayed by inhibitors of ethylene synthesis and action (aminoethoxyvinylglycine and Ag+), confirming the role of ethylene in clinostat epinasty. To test the possibility that clinostat mechanical stresses (leaf flopping) cause ethylene production and, thus, epinasty, vertical plants were stressed with constant, gentle, horizontal, or vertical shaking or with a quick, back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated but with a minimum of gravity compensation, by turning plants so their stems were horizontal, rotating them quickly about the stem axis, and then returning them to the vertical, repeating the treatment every four minutes (clinostat rotation time). None of these mechanical stresses produced significant epinasties, but vigorous hand-shaking (120 seconds per day) generated minor epinasties, as did Ag+ applied daily (concentrations high enough to cause leaf browning). Plants gently inverted every 20 minutes developed epinasty at about the same rate and to about the same extent as clinostated plants, but plants inverted every 20 minutes and immediately returned to the upright position did not become epinastic. It is concluded that clinostat epinasty is probably caused by disturbances in the gravity perception mechanism, rather than by leaf flopping.  相似文献   

4.
Dry weight, leaf number, and leaf size of marigold plants (Tagetes patula) grown from emergence for 18 days on horizontal clinostats rotating at 15 revolutions per hour (rph), were similar to those of plants grown for the same period on vertically oriented clinostats rotating at 15 rph. The horizontally grown plants exhibited some epinasty which disappeared when plants were placed upright for 24 hours. Vertically grown plants when placed on horizontal clinostats for 24 hours exhibited more epinasty than plants grown from emergence on horizontal clinostats.

Data are provided to demonstrate that leaves undergo movement (bending) during each rotation cycle that leads to the development of a leaf curvature that is oriented away from the direction of rotation. The results of this study suggest that epinasty of plants placed on horizontal clinostats could be due to uncontrolled movement of plants during rotation rather than controlled by gravity nullification. The usefulness of horizontal clinostats for gravity nullification or simulating weightlessness on plants is questioned.

  相似文献   

5.
Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h−1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.Key words: mechanostimulation, memory, clinorotation speed and direction, signal persistence, signal saturation  相似文献   

6.
Mirza JI 《Plant physiology》1987,83(1):118-120
In an attempt to study and distinguish the effects of light and gravity on the direction of horizontal root growth, wild-type and an agravitropic mutant of Arabidopsis thaliana L., aux-1 were examined. The mutant aux-1 seedling roots are agravitropic but do respond to light, thus allowing the effects of light and gravity on roots to be studied separately. It is shown that in addition to the recognized negative phototropic and positive gravitropic responses of the root, there are also horizontal curvatures (clockwise or counterclockwise) induced by both unilateral light and gravity. The effects of light and gravity in inducing the horizontal curvature of roots are synergistic when both act in the same direction, and are antagonistic when acting in opposite directions. The results indicate that light and gravity interact to determine the direction and magnitude of the horizontal curvature of roots.  相似文献   

7.
Using horizontal and vertical axis clinostats and sand-grown oat seedlings (Avena sativa), it was found that horizontal clinostat rotation at 2 rpm increased respiration and inorganic and organic phosphorus content of seedlings. Increased coleoptile geotropism and root growth are attributed to rotational nullification of the directional component of the gravitational stimulus. These growth modifications are mechanistically explicable by the relationship between plant metabolism and auxin concentration in these organs.  相似文献   

8.
Shoot inversion-induced release of apical dominance in Pharbitis nil is inhibited by rotating the plant at 0.42 revolutions per minute in a vertical plane perpendicular to the axis of rotation of a horizontal clinostat. Clinostating prevented lateral bud outgrowth, apparently by negating the restriction of the shoot elongation via reduction of ethylene production in the inverted shoot. Radial stem expansion was also decreased. Data from experiments with intact tissue and isolated segments indicated that shoot-inversion stimulates ethylene production by increasing the activity of 1-aminocyclopropane-1-carboxylic acid synthase. The results support the hypothesis that shoot inversion-induced release of apical dominance in Pharbitis nil is due to gravity stress and is mediated by ethylene-induced retardation of the elongation of the inverted shoot.  相似文献   

9.
Using IAAC14, polar transport has been studied in Helianthus annuus shoots in which stem elongation was inhibited by a transverse gravity stimulus induced by horizontal orientation of the plant with daily rotation. Marked inhibition of polar transport of IAA C14 occurred in the treated plants. A similar degree of inhibition occurred in the upper and lower halves of non-rotated horizontally trained shoots. Horizontal orientation of stem segments during the transport test had no consistent effect upon IAA transport. Pretreatment of erect plants with gibberellin greatly enhanced IAAC14 transport and also reduced the inhibitory effect of horizontal orientation. Pretreatment of erect plants with non-radioactive IAA or ethylene inhibited transport of IAA C14 and induced the same symptoms in the shoot as the transverse gravity stimulus. The similarities between the response of the auxin transport system to gravity stimulation, IAA and ethylene are discussed.  相似文献   

10.
The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev·min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1·g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1·g follows the wellestablished pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.  相似文献   

11.
《Genomics》2019,111(4):913-920
Enterobacter sp. J49 is a plant growth promoting endophytic strain that promotes the growth of peanut and maize crops. This strain promotes plant growth by different mechanisms with the supply of soluble phosphorus being one of the most important. Enterobacter sp. J49 not only increases the phosphorus content in the plant but also in the soil favoring the nutrition of other plants usually used in rotation with these crops. The aims of this study were to analyze the genome sequence of Enterobacter sp. J49 in order to deepen our knowledge regarding its plant growth promoting traits and to establish its phylogenetic relationship with other species of Enterobacter genus. Genome sequence of Enterobacter sp. J49 is a valuable source of information to continuing the research of its potential industrial production as a biofertilizer of peanut, maize and other economically important crops.  相似文献   

12.
Orientation of wheat seedling organs in relation to gravity   总被引:6,自引:6,他引:0       下载免费PDF全文
Lyon CJ  Yokoyama K 《Plant physiology》1966,41(6):1065-1073
Seedlings of wheat (Triticum aestivum L.) were grown in special holders that permitted the coleoptile and early roots to develop in moist air. The orientation of the organs of seedlings erect to gravity was compared with that of organs produced on a horizontal clinostat. Orientation was described by the angular position of each organ tip with reference to the axis of the embryo. Comparative tests were also made with barley, rye, and oat seedlings.

The coleoptile of all species developed curvatures in 3 dimensions when geotropic responses were eliminated. The primary root was not precise in its positive geotropism. Seedlings grew on clinostats with much greater variations in the lateral orientation of the central root and with a tendency for it to curve away from the endosperm to a greater degree than in erect seedlings.

The symmetry of root system in wheat was found to depend on a specific mechanism. Under the influence of gravity the earliest lateral roots were oriented in a plane at characteristic angles of about 57.5° with the ideal primary root. The corresponding angles for lateral roots growing on clinostats were greater by about 47.5° as a result of epinasty not previously reported in roots. This force also appeared to be active in the seminal roots of barley and rye but not of oats.

The curvatures in coleoptiles grown without the directional effects of gravity correspond to the results of growth imbalance in Coleus stems in the absence of lateral transport of their auxin by gravity. Root epinasty appears to be based on auxin imbalance. Curvatures in the primary root are also interpreted as results of asymmetrical distribution of growth hormone.

  相似文献   

13.
Plant-soil feedback responses for native and invasive plant species are well documented, but little is known about how feedback effects from the soil biota community affect plant interactions with herbivores. Here we examine whether changes of the soil biota community by the successful invader Solidago canadensis influence growth and herbivore susceptibility of two coexisting native plant species (Tanacetum vulgare, Melilotus albus). Root zone soil from two different habitat types (‘urban’ and ‘suburban’) was collected and used as inocula in a plant-soil feedback study. Each plant species was grown either in its own soil biota community or with the community with a history from the competitive invasive or native plant species. To identify potential drivers of responses to the different soil biota communities, we analyzed root colonization by arbuscular mycorrhizal fungi and dark-septate endophytes (DSE), and the community composition of soil inhabiting nematodes at the end of our experiment. Results show that S. canadensis and M. albus were not affected by soil history. In contrast, T. vulgare showed increased plant growth in ‘foreign’ soil derived from S. canadensis root zone compared with its ‘home’ soil suggesting a growth promotion by the soil biota community of S. canadensis. From the examined drivers, the abundance of DSE explained the growth response of T. vulgare to the S. canadensis soil biota community best. However, shoot herbivory by banded snails (Cepaea nemoralis, C. hortensis) was not affected by soil history, but by the habitat type where the soil inocula originated. Our study shows that a native plant species may profit from the presence of an invasive competitor mediated by changes in the soil biota community.  相似文献   

14.
Oat seedlings were grown in a sand medium on clinostats with horizontal axes of rotation to nullify the directional component of the gravity-force vector. Coleoptile segments from such seedlings showed an enhanced absorption of apically applied exogenous auxin (indole-3-acetic acid), compared to segments from vertically rotated or stationary controls. Absorption of basally applied auxin and auxin transport were unaffected by the gravity treatments. Horizontal rotation did not materially change the amount of auxin produced and transported from excised coleoptile tips: however, plants so rotated showed an enhanced curvature response to unilaterally applied auxin.

Collectively, these experiments indicate that enhanced plant responses to horizontal clinostat rotation, where rates of rotation are sufficient to nullify the directional component of the gravity-force vector, are caused primarily by increases in metabolism and not by a modification of auxin availability. These data do not support recently advanced hypotheses that the polarity of auxin transport is based on gravitational sedimentation of cell inclusions.

  相似文献   

15.
We developed a three-dimensional (3-D) clinostat to simulate a microgravity environment and studied the changes in plant growth processes under this condition. The rate of germination of cress (Lepidium sativum), maize (Zea mays), rice (Oryza sativa), pea (Pisum sativum), or azuki bean (Vigna angularis) was not affected on the clinostat. The clinostat rotation did not influence the growth rate of their roots or shoots, except for a slight promotion of growth in azuki roots and epicotyls. On the contrary, the direction of growth of plant organs clearly changed on the 3-D clinostat. On the surface of the earth, roots grow downward while shoots upward in parallel to the gravity vector. On the 3-D clinostat, roots of cress elongated along the direction of the tip of root primordia after having changed the direction continuously. Rice roots also grew parallel to the direction of the tip of root primordia. On the other hand, roots of maize, pea, and azuki bean grew in a random fashion. The direction of growth of shoots was more controlled even on the 3-D clinostat. In a front view of embryos, shoots grew mostly along the direction of the tip of primordia. In a side view, rice coleoptiles showed an adaxial (toward the caryopsis) while coleoptiles of maize and epicotyls of pea and azuki bean an abaxial curvature. The curvature of shoots became larger with their growth. Such an autotropism may have an important role in regulation of life cycle of higher plants under a microgravity environment.  相似文献   

16.
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.  相似文献   

17.
Dimensional changes during gravitropic bending of cocklebur (Xanthium strumarium L.) dicot stems were measured using techniques of stereo photogrammetry. The differential growth is from an increased growth rate on the bottom of the stem and a stopping or contraction of the top.

Contraction of the top was especially evident upon release and immediate bending of horizontal stems that had been restrained between stiff wires for 36 hours. The energy for this could have been stored in both the top and bottom, since the bottom elongated, and the top contracted.

Forces developed during bending were measured by fastening a stem tip to the end of a bar with attached strain gauges and recording electrical output from the strain gauges. Restrained mature cocklebur stems continued to accumulate potential energy for bending for about 120 hours, after which the recorded force reached a maximum.

Pressures within castor bean (Ricinus communis L.) stems were also measured with 3.5-millimeter diameter pressure transducers. As expected, the pressure on the bottom of the restrained plants increased with time; pressures decreased in vertical controls, tops of restrained stems, and bottoms of free-bending stems. Pressures increased in tops of free-bending stems. When restrained plants were released, pressure on the bottom decreased and pressure on the top increased. Results suggest a possible role for cell contraction in the top of stems bending upward in response to gravity.

  相似文献   

18.
Gravitropic response is a plant growth response against changing its position relative to the gravity vector. In the present work we studied actin cytoskeleton rearrangements during Arabidopsis root gravitropic response. Two alternative approaches were used to visualize actin microfilaments: histochemical staining of fixed roots with rhodamine-phalloidin and live imaging of microfilaments in GFP-fABD2 transgenic plants. The curvature of actin microfilaments was shown to be increased within 30–60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. Methodological issues of actin cytoskeleton visualization in the study of Arabidopsis root gravitropic response, as well as the role of microfilaments at the stages of gravity perception, signal transduction and gravitropic bending formation are discussed. It is concluded that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed.  相似文献   

19.
Gravitropism, the directed plant growth with respect to the gravity vector, is regulated by auxin and its polar transport system, several secondary messengers, and by the cytoskeleton. Recently we have shown that the actin cytoskeleton in the root transition zone of Arabidopsis thaliana (L.) Heynh was rearranged after gravistimulation (rotation by 90°): the fraction of axially aligned microfilaments decreased and the fraction of oblique and transversally-oriented microfilaments increased. In the present research we have studied the effect of ethylene and inhibitors of its synthesis on actin cytoskeleton rearrangement during the gravitropic response. Application of the ethylene releasing substance ethephon to A. thaliana seedlings led to the disassembly of actin microfilaments as well as their broad angle distribution in cells of the root transition zone. This actin rearrangement was escaped by treatment with the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). Another negative regulator of ethylene, salicylic acid, was shown to disturb actin microfilament rearrangement as well. We conclude that ethylene is essential for the process of actin cytoskeleton rearrangement in root cortex cells during the gravitropic bending response.  相似文献   

20.
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号