首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interaction of vinblastine with calf brain tubulin: multiple equilibria   总被引:2,自引:0,他引:2  
G C Na  S N Timasheff 《Biochemistry》1986,25(20):6214-6222
The binding of the anticancer drug vinblastine to calf brain tubulin was measured by a batch gel filtration method in PG buffer (0.01 M NaPi, 10(-4) M GTP, pH 7.0) at three different protein concentrations. The Scatchard binding isotherms obtained were curvilinear. The binding of the first vinblastine molecule to each tubulin alpha-beta dimer (Mr 110,000) was enhanced by an increase in the protein concentration. Additional binding of vinblastine to the protein was independent of the protein concentration. Theoretical ligand binding isotherms were calculated for a ligand-induced macromolecule self-association involving various ligand stoichiometries and association schemes. Fitting of the experimental data to these isotherms showed that the system can be described best by a one-ligand-induced isodesmic indefinite self-association. The pathway giving the best fit consists of a ligand-mediated plus -facilitated self-association mechanism. The self-association-linked bound vinblastine binds specifically at a site with an intrinsic binding constant K1 = 4 X 10(4) M-1. Additional vinblastine molecules can bind less strongly to tubulin in probably nonspecific fashion, and the previous reports of two specific sites on alpha-beta tubulin for binding vinblastine are incorrect. The self-association constant K2 for liganded tubulin is 1.8 X 10(5) M-1. This analysis is fully consistent with the conclusions derived earlier from the linked function analysis of the vinblastine-induced tubulin self-association [Na, G. C., & Timasheff, S. N. (1980) Biochemistry 19, 1347-1354; Na, G. C., & Timasheff, S. N. (1980) Biochemistry 19, 1355-1365].  相似文献   

2.
We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral association, and allows an investigation of higher divalent cation concentrations. In the presence of 150 mM NaCl plus 1 mM divalent cations (Mn2+, Mg2+, or Ca2+) GDP enhances vinblastine-induced spiral formation by 0.35 (+/- 0.21) kcal/mol. Relaxation times determined by stopped-flow light scattering experiments in the presence of 150 mM NaCl and vincristine are severalfold longer than those in the presence of vinblastine, consistent with a mechanism involving the redistribution of longer polymers. Unlike previous results in the absence of NaCl, relaxation times in the presence of NaCl are only weekly protein concentration dependent, suggesting the absence of annealing or an additional rate-limiting step in the mechanism.  相似文献   

3.
R P Frigon  S N Timasheff 《Biochemistry》1975,14(21):4567-4573
The thermodynamic parameters of the magnesium ion induced self-association of calf brain tubulin in pH 7.0, 0.01 M phosphate buffer containing 10(-4) M GTP, were determined from sedimentation velocity experiments. This reaction proceeds by an isodesmic mechanism terminated by the highly favored formation of a closed ring shaped polymer of degree of association 26 +/- 4. Analysis of the variation of the apparent dimerization constant in the isodesmic mechanism s,ows that this self-association is characterized by positive enthalpy, entropy, heat capacity, and molar volume changes, as well as the binding of one additional magnesium ion, which is probably not involved as a bridge between the protein molecules. The addition of the last monomeric subunit has a free energy which is about three times that of dimer formation. Under the conditions of these experiments, tubulin binds 48 +/- 5 magnesium ions with a free energy of --2.8 kcal/mol.  相似文献   

4.
The interactions of the vinca alkaloid drugs catharanthine and vindoline with tubulin have been investigated and compared with those of vinblastine and vincristine. Both drugs were found to be less effective in bringing about the inhibition of tubulin self-assembly into microtubules than vincristine and vinblastine, the drug to protein molar ratio required being 3 orders of magnitude greater. An analytical ultracentrifuge study has shown that catharanthine can induce the self-association of tubulin into linear indefinite polymers with an efficacy that is 75% that of vinblastine or vincristine, the intrinsic dimerization constant for the liganded protein being K2 congruent to 1 x 10(5) M-1. The effect of vindoline was marginally detectable. Binding studies of catharanthine using the gel batch and fluorescence perturbation techniques showed a polymerization-linked binding of one catharanthine molecule per tubulin alpha-beta dimer with a binding constant of (2.8 +/- 0.4) x 10(3) M-1. For vindoline, binding to tubulin was marginally detectable by fluorescence spectroscopy, although addition of vindoline to tubulin did generate a difference spectrum. It was concluded that the binding of vinblastine/vincristine to tubulin and its consequences are determined by the interaction of the indole part of catharanthine with tubulin, the role of vindoline being that of an anchor.  相似文献   

5.
Retroviral integration protein (IN) has been shown to be both necessary and sufficient for the integration of reverse-transcribed retroviral DNA into the host cell DNA. It has been demonstrated that self-assembly of IN is essential for proper function. Analytical ultracentrifugation was used to determine the stoichiometry and free energy of self-association of a full-length IN in various solvents at 23.3 degrees C. Below 8% glycerol, an association stoichiometry of monomer-dimer-tetramer is observed. At salt concentrations above 500 mM, dimer is the dominant species over a wide range of protein concentrations. However, as physiological salt concentrations are approached, tetramer formation is favored. The addition of glycerol to 500 mM NaCl, 20 mM Tris (pH 8.4), 2 mM beta-mercaptoethanol significantly enhances dimer formation with little effect on tetramer formation. Furthermore, as electrostatic shielding is increased by increasing the ionic strength or decreasing the cation size, dimer formation is strengthened while tetramer formation is weakened. Taken together, the data support a model in which dimer formation includes favorable buried surface interactions which are opposed by charge-charge repulsion, while favorable electrostatic interactions contribute significantly to tetramer formation.  相似文献   

6.
The interaction of vinblastine with calf brain tubulin has been studied by velocity sedimentation, gel filtration, and fluorescence. It has been established that vinblastine induces the stable tubulin dimers to dimerize further to tetramers. The sedimentation patterns at low vinblastine concentration were analyzed by the ligand-induced dimerization theory of Cann and Goad ((1972) Arch. Biochem. Biophys. 153, 603-609). The association constant and stoichiometry for the binding of vinblastine to tubulin, determined by gel filtration and spectrofluorometry, were (2.3 +/- 0.1) X 10(4) liters/mol at 25 degrees and two vinblastine binding sites per tubulin dimer of molecular weight 110,000. The binding of vinblastine to tubulin is characterized by an enthalpy change of 5.8 kcal/mol and a positive unitary entropy change. Binding of vinblastine did not induce any significant conformational changes in tubulin as monitored by circular dichroism. However, the vinblastine-tubulin complex displayed an ultraviolet difference spectrum, which appears to reflect mostly the transfer of vinblastine to a less polar environment. Besides binding vinblastine, tubulin was shown to bind vincristine with identical free energy and stoichiometry and to have a single binding site for 8-anilino-1-naphthalene sulfonic acid per tubulin dimer, which is independent of those for vinblastine.  相似文献   

7.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

8.
Ionic and nucleotide requirements for microtubule polymerization in vitro.   总被引:23,自引:0,他引:23  
J B Olmsted  G G Borisy 《Biochemistry》1975,14(13):2996-3005
The ionic and nucleotide requirements for the in vitro polymerization of microtubules from purified brain tubulin have been characterized by viscometry. Protein was purified by successive cycles of a temperature dependent assembly-diassembly scheme. Maximal polymerization occurred at a concentration of 0.1 M Pipes (piperazine-N,N'-bis(2-ethanesulfonic acid)); increasing ionic strength by addition of NaCl to samples prepared in lower buffer concentrations did not result in an equivalent level of polymerization. Both Na-+ and K-+ inhibited microtubule formation at levels greater than 240 mM, withmaximal assembly occurring at physiological concentrations of 150 mM. Maximal extent of assembly occurred at pH 6.8 and optimal rate at pH 6.6. Inhibition of polymerization was half-maximal at added calcium concentrations of 1.0 mM and magnesium concentrations of 10.0 mM. EGTA (ethylene glycol bis(beta-aminoethyl ether)tetraacetic acid), which chelates Ca-2+, had no effect on polymerization over a concentration range of 0.01-10.0 mM. In contrast, EDTA (ethylenediaminetetraacetic acid), which chelates both Mg-2+ and Ca-2+, inhibited assemble half-maximally at 0.25 mM and totally at 2.0 mM. As determined from experiments using Mg-2+-EDTA buffers, magnesium was required for polymerization. Magnesium promoted the maximal extent of assembly at substoichiometric levels relative to tubulin, but was maximal for both rate and extent at stoichiometric concentrations. Elemental analyses indicated that approximately 1 mol of magnesium was tightly bound/mol of tubulin dimer. Viscosity development was dependent upon hydrolyzable nucleoside triphosphate, and stoichiometric levels of GTP were sufficient for maximal polymerization. The effect of magnesium in increasing the rate of GTP-dependent polymerization suggests that a Mg-2+-GTP complex is the substrate required for a step in assembly.  相似文献   

9.
Vincristine-induced self-association of calf brain tubulin   总被引:2,自引:0,他引:2  
V Prakash  S N Timasheff 《Biochemistry》1985,24(19):5004-5010
The vincristine-induced self-association of tubulin has been examined in a sedimentation velocity study as a function of free drug concentration in PG buffer (0.01 M NaPi and 10(-4) M GTP, pH 7.0) at 20 degrees C. Analysis of the weight-average sedimentation coefficient (S20,w) as a function of protein concentration showed a good fit with the model of an indefinite, isodesmic self-association mechanism. Analysis of the apparent association constants in terms of the Wyman linkage relations showed a good fit to mediation of the self-association by the binding of one ligand molecule. The intrinsic association constant for dimerization of the vincristine-liganded tubulin was found to be 3.8 X 10(5) M-1, and the intrinsic equilibrium constant for the binding of the self-association-linked vincristine molecule had a value of 3.5 X 10(4) M-1, consistent with that measured by fluorescence in our laboratory [Prakash, V., & Timasheff, S. N. (1983) J. Biol. Chem. 258, 1689-1697]. Both reactions are stronger in the presence of vincristine than of vinblastine, reflecting the oxidation of a -CH3 group to -CHO when going from the latter drug to the former one.  相似文献   

10.
The phthalocyanine tetrasulfonates (PcTS), a class of cyclic tetrapyrroles, bind to the mammalian prion protein, PrP. Remarkably, they can act as anti-scrapie agents to prevent the formation and spread of infectious, misfolded PrP. While the effects of phthalocyanines on the diseased state have been investigated, the interaction between PcTS and PrP has not yet been extensively characterized. Here we use multiple, complementary assays (surface plasmon resonance, isothermal titration calorimetry, fluorescence correlation spectroscopy, and tryptophan fluorescence quenching) to characterize the binding of PcTS to natively-folded hamster PrP(90-232), in order to determine binding constants, ligand stoichiometry, influence of buffer ionic strength, and the effects of chelated metal ions. We found that binding strength depends strongly on chelated metal ions, with Al(3+)-PcTS binding the weakest and free-base PcTS the strongest of the three types tested (Al(3+), Zn(2+), and free-base). Buffer ionic strength also affected the binding, with K(d) increasing along with salt concentration. The binding isotherms indicated the presence of at least two different binding sites with micromolar affinities and a total stoichiometry of ~4-5 PcTS molecules per PrP molecule.  相似文献   

11.
Vinblastine is an antimitotic agent that has been used extensively in cancer chemotherapy. The biological effects of the drug are believed to be the result of its interaction with tubulin, the major component of cellular microtubules. Fluorescence spectroscopy is a powerful and versatile technique for studying drug-tubulin interactions, but it rarely has been applied to studies involving vinca alkaloids. We have prepared a new fluorescent derivative of vinblastine designed to retain high affinity for tubulin while possessing a fluorophore that absorbs and emits visible light. A coumarin derivative of vinblastine, 17-deacetyl-O-(3-carbonylamino-7-diethylaminocoumarin) vinblastine (F-VLB), was prepared by reaction of 17-deacetylvinblastine with 7-diethylaminocoumarin-3-carbonyl azide. F-VLB was a potent inhibitor of in vitro microtubule assembly (IC(50) = 0.5 microM). F-VLB binding to tubulin was inhibited by vinblastine. Tubulin binding induced an increase in the F-VLB emission intensity and shifted the emission maximum to higher energy (from 500 to 480 nm). The Stokes shift of tubulin-bound F-VLB was about the same as the Stokes shift of the molecule in ethanol, indicating that the tubulin-bound fluorophore is probably on the exterior of the vinblastine binding site. Unlike vinblastine, F-VLB failed to induce self-assembly of tubulin that could be detected by light scattering or electron microscopy, although some self-association could be detected by analytical ultracentrifugation. Equilibrium binding parameters were quantitatively determined by monitoring the change in fluorescence anisotropy of F-VLB upon tubulin binding. The apparent equilibrium constant for F-VLB binding to tubulin [K(a)(app) = (7.7 +/- 0.5) x 10(4) M(-1) at 25 degrees C] was identical to the equilibrium constant for vinblastine binding to 2 microM tubulin (K(1)) measured under similar buffer and temperature conditions using ultracentrifugation [Vulevic, B., Lobert, S., and Correia, J. J. (1997) Biochemistry 36, 12828-12835]. Binding allocolchicine to tubulin did not significantly affect F-VLB's affinity for the protein [K(a)(app) = (9.1 +/- 0.4) x 10(4) M(-1) at 25 degrees C]. Analysis of the steady-state emission spectra yielded a distance between the colchicine and vinca binding sites on tubulin of approximately 40 A. F-VLB bound to paclitaxel- and glutaraldehyde-stabilized microtubules, with approximately equal affinity. We conclude that F-VLB can be used to obtain information about the vinblastine binding site on tubulin under equilibrium conditions.  相似文献   

12.
Subunit associations among chromatin particles.   总被引:4,自引:3,他引:1       下载免费PDF全文
The self-association of oligonucleosomal chromatin particles in solution has been studied by light scattering and sedimentation. In the absence of magnesium ions no association is observed. In the presence of 70mM sodium or 2mM magnesium ions mono, di, tri and tetranucleosomes self-associate only if they contain bound histone 1. This association leads to the formation of compact aggregates and is continuous and non-cooperative. The relevance to higher order arrangements of nucleosomes is discussed.  相似文献   

13.
The self-association of native alphas1-casein is driven by a sum of interactions which are both electrostatic and hydrophobic in nature. The dichroism of aromatic side chains was used to derive regio-specific evidence in relation to potential sites of alphas1-casein polymerization. Near-ultraviolet circular dichroism (CD) revealed that both tyrosine and tryptophan side chains play a role in alphas1-casein associations. Spectral evidence shows these side chains to be in an increasingly nonaqueous environment as both ionic strength and protein concentration lead to increases in the degree of self-association of the protein from dimer to higher oligomers. Near-UV CD investigation of the carboxypeptidase A treated peptide, alphas1-casein(1-197), indicated that the C-terminal residue (Trp199) may be superficial to these interactions, and that the region surrounding Trp164 is more directly involved in an aggregation site. Similar results for the cyanogen bromide cleavage peptide alphas1-casein(136-196) indicated the presence of strongly hydrophobic interactions. Association constants for the peptides of interest were determined by analytical ultracentrifugation, and also were approximated from changes in the near-UV CD curves with protein concentration. Sedimentation equilibrium experiments suggest the peptide to be dimeric at low ionic strength; like the parent protein, the peptide further polymerizes at elevated (0.224 M) ionic strength. The initial site of dimerization is suggested to be the tyrosine-rich area near Pro147, while the hydrophobic region around Pro168, containing Trp164, may be more significant in the formation of higher-order aggregates.  相似文献   

14.
Rhizoxin binding to tubulin at the maytansine-binding site   总被引:1,自引:0,他引:1  
The binding of rhizoxin, a potent inhibitor of mitosis and in vitro microtubule assembly, to porcine brain tubulin was studied. Tubulin possesses one binding site for rhizoxin per molecule with a dissociation constant (Kd) of 1.7.10(-7) M. Ansamitocin P-3, a homologue of maytansine, was a competitive inhibitor of rhizoxin binding, with an inhibition constant of 1.3.10(-7) M. Vinblastine also inhibited rhizoxin binding, but was not fully competitive, and the inhibition constant was 2.9.10(-6) M. In contrast, both rhizoxin and ansamitocin P-3 were potent inhibitors of vinblastine binding. Rhizoxin inhibited tau-promoted tubulin assembly, but it, differing from vinblastine, did not induce tubulin aggregation into spirals, even at a concentration as high as 2.10(-5) M. In addition, rhizoxin strongly inhibited vinblastine-induced tau-dependent tubulin aggregation. Rhizoxin binding to tubulin was completely independent from colchicine binding. These effects resemble those of maytansine. The results suggested that rhizoxin binds to the maytansine-binding site and that the binding sites of rhizoxin and vinblastine are not the same.  相似文献   

15.
Myeloma nephropathy is a disorder characterized by deposition of monoclonal immunoglobulin light chains in the kidneys. The chains deposited form either amyloid fibrils or granular (amorphous) aggregates. Distinct molecular mechanisms leading to the formation of different aggregate types in kidney of patients with multiple myeloma are poorly understood. Here we describe the self-association kinetics of human monoclonal immunoglobulin light chains lambda (GRY) isolated from urine of a patient with multiple myeloma. Under physiological conditions, the isolated light chain exists predominantly in a form of covalent dimer with apparent molecular mass of 50.1 kD. Spectral probe binding, analytical gel filtration, Western blot analysis, and electron microscopy indicate that GRY dimer aggregation occurs via two different pathways producing either amyloid fibrils or amorphous aggregates depending on microenvironment. Incubation of GRY (25 microM) for 4-14 days at 37 degrees C in phosphate buffered saline (PBS), pH 7.0, or in PBS containing urea (0.8 M), pH 6.5, leads to amyloid fibril formation. Under electron microscopy, the fibrils show unbranched thread-like structures, approximately 60-80 x 1000 A in size, which can bind thioflavin T and Congo Red. GRY maintained in acetate buffer, pH 3.5, forms granular aggregates. The structure of GRY oligomers formed during the early stage of amyloid fibril formation (1-4 days) has been examined by means of protein cross-linking with homobifunctional reagents. These oligomers are predominantly trimers and tetramers.  相似文献   

16.
We have studied the self-association reactions of purified GDP-liganded tubulin into double rings and taxoid-induced microtubules, employing synchrotron time-resolved x-ray solution scattering. The experimental scattering profiles have been interpreted by reference to the known scattering profiles to 3 nm resolution and to the low-resolution structures of the tubulin dimer, tubulin double rings, and microtubules, and by comparison with oligomer models and model mixtures. The time courses of the scattering bands corresponding to the different structural features were monitored during the assembly reactions under varying biochemical conditions. GDP-tubulin essentially stays as a dimer at low Mg(2+) ion activity, in either the absence or presence of taxoid. Upon addition of the divalent cations, it associates into either double-ring aggregates or taxoid-induced microtubules by different pathways. Both processes have the formation of small linear (short protofilament-like) tubulin oligomers in common. Tubulin double-ring aggregate formation, which is shown by x-ray scattering to be favored in the GDP- versus the GTP-liganded protein, can actually block microtubule assembly. The tubulin self-association leading to double rings, as determined by sedimentation velocity, is endothermic. The formation of the double-ring aggregates from oligomers, which involves additional intermolecular contacts, is exothermic, as shown by x-ray and light scattering. Microtubule assembly can be initiated from GDP-tubulin dimers or oligomers. Under fast polymerization conditions, after a short lag time, open taxoid-induced microtubular sheets have been clearly detected (monitored by the central scattering and the maximum corresponding to the J(n) Bessel function), which slowly close into microtubules (monitored by the appearance of their characteristic J(0), J(3), and J (n) - (3) Bessel function maxima). This provides direct evidence for the bidimensional assembly of taxoid-induced microtubule polymers in solution and argues against helical growth. The rate of microtubule formation was increased by the same factors known to enhance taxoid-induced microtubule stability. The results suggest that taxoids induce the accretion of the existing Mg(2+)-induced GDP-tubulin oligomers, thus forming small bidimensional polymers that are necessary to nucleate the microtubular sheets, possibly by binding to or modifying the lateral interaction sites between tubulin dimers.  相似文献   

17.
Colchicine-tubulin dimer comPlex, a Potent inhibitor of normal microtubule assembly undergoes extensive self-assembly in the Presence of 1 X 10-4 M zinc sulPhate. Polymers assembled from colchicine-tubulin dimer comPlexes are sensitive to cold. Although colchicine can be accomodated within the Polymeric structure, the drug cannot bind to tubulin subunits in the intact Polymers. This is evidenced by the fact that (a) the colchicine binding activity of tubulin is lost when allowed to Polymerize with zinc sulPhate, (b) the loss in colchicine binding could be Prevented by Preincubation of tubulin with 1 X 10-3 M CaCl2 or 1 X 10-5 M vinblastine sulPhate and finally (c) no loss in colchicine binding activity is found when tubulin is kePt at a concentration far below the critical concentration for Polymerization. Unlike colchicine, its B-ring analogues desacetamido colchicine (devoid of the B-ring subtituent) and 2-methoxy-5-(2′, 3′, 4′-trimethoxyPhenyl) troPone (devoid of the B-ring) can bind to tubulin subunits in the intact Polymers. Thus we conclude that the colchicine binding domain on the tubulin molecule is mostly (if not comPletely) exPosed in the Zn(II) -induced Polymers and the B-ring substituent Plays a major role in determining the binding ability of a colchicine analogue to tubulin in the intact Zn(II) -induced sheets.  相似文献   

18.
Oryzalin, a dinitroaniline herbicide, was previously reported to bind to plant tubulin with a moderate strengthe interaction (dissociation constant [Kd] = 8.4 [mu]M) that appeared inconsistent with the nanomolar concentrations of drug that cause the loss of microtubules, inhibit mitosis, and produce herbicidal effects in plants (L.C. Morejohn, T.E. Bureau, J. Mole-Bajer, A.S. Bajer, D.E. Fosket [1987] Planta 172: 252-264). To characterize further the mechanism of action of oryzalin, both kinetic and quasi-equilibrium ligand-binding methods were used to examine the interaction of [14C]-oryzalin with tubulin from cultured cells of maize (Zea mays L. cv Black Mexican Sweet). Oryzalin binds to maize tubulin dimer via a rapid and pH-dependent interaction to form a tubulin-oryzalin complex. Both the tubulin-oryzalin binding strength and stoichiometry are underestimated substantially when measured by kinetic binding methods, because the tubulin-oryzalin complex dissociates rapidly into unliganded tubulin and free oryzalin. Also, an uncharacterized factor(s) that is co-isolated with maize tubulin was found to noncompetitively inhibit oryzalin binding to the dimer. Quasi-equilibrium binding measurements of the tubulin-oryzalin complex using purified maize dimer afforded a Kd of 95 nM (pH 6.9; 23[deg]C) and an estimated maximum molar binding stoichiometry of 0.5. No binding of oryzalin to pure bovine brain tubulin was detected by equilibrium dialysis, and oryzalin has no discernible effect on microtubules in mouse 3T3 fibroblasts, indicating an absence of the oryzalin-binding site on mammalian tubulin. Oryzalin binds to pure taxol-stabilized maize microtubules in a polymer mass- and number-dependent manner, although polymerized tubulin has a much lower oryzalin-binding capacity than unpolymerized tubulin. Much more oryzalin is incorporated into polyment during taxol-induced assembly of pure maize tubulin, and half-maximal inhibition of the rapid phase of taxol-induced polymerization of 5 [mu]M tubulin is obtained with 700 [mu]M oryzalin. The data are consistent with a molecular mechanism whereby oryzalin binds rapidly, reversibly, and with high affinity to the plant tubulin dimer to form a tubulin-oryzalin complex that, at concentrations substoichiometric to tubulin, copolymerizes with unliganded tubulin and slows further assembly. Because half-maximal inhibition of maize callus growth is produced by 37 nM oryzalin, the herbicidal effects of oryzalin appear to result from a substoichiometric poisoning of microtubules.  相似文献   

19.
T Shimo-Oka  M Hayashi  Y Watanabe 《Biochemistry》1980,19(21):4921-4926
This report presents evidence suggesting the direct binding between tubulin and myosin: (1) coprecipitation of tubulin with myosin occurred at a low ionic strength at which no precipitation of tubulin by itself occurred; (2) the amount of tubulin coprecipitated was unchanged when the coprecipitate was washed thoroughly; (3) about 2 mol of tubulin dimer could bind per mol of myosin at the maximum under our experimental conditions. The binding of about 1 mol of tubulin dimer was influenced by the presence of F-actin, but that of the other 1 mol of tubulin dimer was uninfluenced. In the former binding, tubulin or actin which bound first to myosin was suggested to have a priority. With regard to the priority of the binding, a similar result was obtained from the experiments of tubulin interference in actin activation of myosin Mg2+-ATPase. The tubulin-myosin binding occurred moderately even at 0 degrees C and was not affected by Ca2+ (2 mM), colchicine (200 microM), or Mg-ATP (4 mM), reflecting that the ability of tubulin to bind to myosin was different from the ability of tubulin to form microtubules and that the nature of tubulin-myosin binding was different from that of F-actin-myosin binding. Besides tubulin-myosin interaction, a possible interaction between microtubule-associated proteins (MAPs) and actomyosin was suggested from the data that MAPs activated actomyosin MG2+-ATPase activity while purified tubulin inhibited the activity.  相似文献   

20.
Gossypol is a polyphenolic pigment, which is employed as a male antifertility drug. It inhibits, among other reported effects, the growth of cultured mammalian cells, spermiogenesis, flagellar motility in Trypanosoma and sperm, dynein ATPase and the lactate dehydrogenase X (LDH-X) isozyme. We have characterized the non-covalent binding of gossypol to purified calf brain tubulin in 10 mM phosphate buffer, 0.1 mM GTP pH 7.0 at 25 degrees C. Equilibrium measurements were performed by difference spectroscopy. A peak at 435 nm was produced by the perturbation of gossypol light absorption upon binding to tubulin. The experimental isotherm was fitted by 1.96 +/- 0.06 gossypol binding sites per tubulin molecule, with identical apparent equilibrium binding constants of (7.5 +/- 1.1) X 10(4) M-1. The complex formed could be separated from free gossypol by gel chromatography. Binding of gossypol was independent of the presence of 0.1 mM GTP in the buffer. Gossypol did not affect the binding of ligands to the colchicine site. Gossypol interacted with vinblastine but apparently did not bind to the vinblastine sites of tubulin. Gossypol did not displace anilinonaphthalene sulphonate (ANS) bound to tubulin, but caused a strong (fivefold) quenching of its fluorescence. This indicated that gossypol probably binds in the vicinity of the ANS site of tubulin. Gossypol inhibited in vitro microtubule assembly at the same concentration range employed in the binding studies. An increase in the critical protein concentration required for polymerisation was observed, most simply interpreted by a stoichiometric mechanism. Gossypol did not induce any noticeable distortion of the microtubules observed under the electron microscope. This compound constitutes a new tubulin ligand and an inhibitor of microtubule assembly in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号