首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
P F Coleman 《Biochemistry》1977,16(3):345-351
The binding of oxygen and 1-oxyl-2,2,6,6-tetramethylpiperidine 4-triphosphate (spin-labeled triphosphate) to normal adult human hemoglobin (HbA) covalently labeled at the beta-93 sulfhydryl groups with N-(2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide (I) was studied. HbA-I was used as a model for HbA labeled at the beta-93 SH groups with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide (II) since the binding of SLTP to HbA-II could not be measured conveniently, in the presence of the paramagnetic resonance signal of II. Both HbA-I and HbA-II can be treated as variant hemoglobins with abnormal beta chains. The oxygen and SLTP binding data from HbA-I and oxygen binding data from HbA-II are consistent with a concerted transition model for cooperativity which assumes nonequivalence between alpha and beta subunits (GCT model). The distribution of environments "seen" by conformation sensitive probes such as II and trifluoracetone (19F NMR probe) attached to the beta-93 sulfhydryl groups of HbA can also be accounted for by the GCT model. It is proposed that the beta-93 probes sense the dramatic change in beta subunit structure resulting from the quaternary structure change (T leads to R) upon heme saturation as well as tertiary structure changes at the alpha1-beta2 contact region resulting from ligand binding to the beta-heme group. Structural changes caused by ligation of the alpha-hemes are not discussed.  相似文献   

2.
The two key structural features of alpha 2-macroglobulin (alpha 2M) involved in inhibitory caging of proteases are the thiol ester and the bait region. This paper examines the environment of the hydrolyzed thiol ester in methylamine-treated human alpha 2M and the separation between the bait region and the thiol ester and between the four thiol esters in the tetramer to try to further our understanding of how bait region proteolysis triggers thiol ester cleavage. The sulfhydryl groups of Cys-949, formed upon cleavage of the thiol ester by methylamine, were specifically labeled with the nitroxide spin-labels 3-(2-iodoacetamido)-PROXYL (iodo-I) (PROXYL = 2,2,5,5-tetramethylpyrrolidine-1-oxyl), 3-[2-(2-iodoacetamido)acetamido]-PROXYL (iodo-II), and 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (iodo-III). ESR spectra of these alpha 2M derivatives showed that label I is firmly held and label II has limited freedom of rotation consistent with location of the cysteine residue in a narrow cavity. Label III has much greater motional freedom. From the absence of dipole-dipole splittings in the ESR spectra, it is concluded that the four nitroxide groups in the tetramer are more than 20 A apart for both label I and label II. Label I broadens 1H NMR signals from one phenylalanyl, one tyrosyl, and four histidyl residues in the bait region. Separations of 11-17 A are estimated between the nitroxide of label I and these residues. Label II is further away and only broadens resonances from one of the histidines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Three new spin-labeled glycosides, spin-label I [1-[4-(beta-D-galactopyranosyloxy)phenyl]-3-(2,2,6,6-tetramethyl-1 -oxypiperidin-4-yl)-2-thiourea], spin-label II (2,2,6,6-tetramethyl-1-oxypiperidin-4-yl alpha-D-galactopyranoside), and spin-label III [1-(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)-3-(2,2,6,6- tetramethyl-1-oxypiperidin-4-yl)-2-thiourea], were investigated as structural probes of Griffonia simplicifolia I isolectins (GS I) A4 and B4, respectively, by electron spin resonance (ESR) and inhibition of guaran isolectin precipitation. The p-aminophenyl beta-galactoside spin-label I was strongly immobilized by the B4 isolectin (Kd = 0.42 mM; 2T parallel = 54.0 +/- 0.3 G), while binding to the A4 isolectin was so weak (KI congruent to 2 mM) that binding was undetectable by ESR. The preference for the B4 isolectin was indicative of a more extended hydrophobic binding locus adjacent to the carbohydrate-specific binding site. The alpha-galactosyl spin-label II bound slightly more strongly to the A4 than to the B4 isolectin, as evidenced in both Kd values and particularly by differences in the degree of immobilization (2T parallel = 53.5 vs. 51.5 G, respectively). The 2-N-substituted methyl galactoside spin-label III was so poor an inhibitor of both isolectins (KI congruent to 1-2 mM) that ESR detection of the bound complex was not feasible. In all cases above, the spin-labels were displaced by specific monosaccharide haptens.  相似文献   

4.
Thrombomodulin (TM) is an endothelial cell surface protein that binds thrombin to form a reversible complex with altered enzyme specificity. The complex rapidly converts protein C to the anticoagulant enzyme activated protein C and has decreased fibrinogen clotting activity. To investigate whether formation of this complex elicits conformational changes in the active center of thrombin, we employed the following fluorosulfonyl spin-label inhibitors: N-(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)-m-(fluorosulfonyl)benzamide (m-V); O-(2,2,6,6-tetramethyl-1-oxy-4-piperidinyl) N-[m-(fluorosulfonyl)phenyl]carbamate (m-VI); N-[4-(fluorosulfonyl)phenyl]-2,2,5,5-tetramethyl-1-oxy-3-pyrroline -3-carboxamide (p-I); N-(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)-p-(fluorosulfonyl)benzamide (p-V). To compare the spectra of the free thrombin with those of the complex, the viscosity of the solution was adjusted with sucrose to give similar tumbling rates (isokylindric spectra) or the macromolecular rotational contribution to the spectra was essentially eliminated with saturated sucrose. Both a buffer-soluble proteolytic derivative of TM and the intact molecule elicited changes in the electron spin resonance signals of many of the labeled thrombins employed. Two of the labels, p-I and p-V, had previously been shown to exhibit decreased mobility when indole derivatives were bound to thrombin. When TM complexes with thrombin, the mobility of the p-I label increases while the mobility of the p-V label decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
S I Chang  G G Hammes 《Biochemistry》1986,25(16):4661-4668
The spatial relationships between the four reduced nicotinamide adenine dinucleotide phosphate (NADPH) binding sites on chicken liver fatty acid synthase were explored with electron paramagnetic resonance (EPR) and spin-labeled analogues of NADP+. The analogues were prepared by reaction of NADP+ with 2,2,5,5-tetramethyl-1-oxy-3-pyrroline-3-carboxylic acid, with 1,1'-carbonyldiimidazole as the coupling reagent. Several esterification products were characterized, and the interaction of the N3' ester of NADP+ with the enzyme was examined in detail. Both 1H13, 14N and 2H13, 15N spin-labels were used: the EPR spectrum was simpler, and the sensitivity greater, for the latter. The spin-labeled NADP+ is a competitive inhibitor of NADPH in fatty acid synthesis, and an EPR titration of the enzyme with the modified NADP+ indicates four identical binding sites per enzyme molecule with a dissociation constant of 124 microM in 0.1 M potassium phosphate and 1 mM ethylenediaminetetraacetic acid (pH 7.0) at 25 degrees C. The EPR spectra indicate the bound spin-label is immobilized relative to the unbound probe. No evidence for electron-electron interactions between bound spin-labels was found with the native enzyme, the enzyme dissociated into monomers, or the enzyme with the enoyl reductase sites blocked by labeling the enzyme with pyridoxal 5'-phosphate. Furthermore, the EPR spectrum of bound ligand was the same in all cases. This indicates that the bound spin-labels are at least 15 A apart, that the environment of the spin-label at all sites is similar, and that the environment is not altered by major structural changes in the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To help interpret the electron spin resonance (esr) spectra of spin-labeled actin, the positions of attachment of the spin labels, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) maleimide and N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide to rabbit skeletal muscle actin have been determined. For this purpose spin-labeled peptides released by tryptic digestion of the spin-labeled actin were isolated by chromatography and identified from their positions of elution and amino acid composition.With purified F-actin that had not undergone structural changes both labels reacted exclusively with the sulfhydryl group of the C-terminal sequence. But if the actin was stored in the F-form in the absence of ATP it evidently underwent a structural alteration because reaction was then at another sulfhydryl group, in the N-terminal sequence, and the actin had an irregular appearance in the electron microscope. ADP and tripolyphosphate were as effective as ATP in preventing this alteration. A maximum of 1 equiv of spin label was bound, irrespective of the site of labeling, and the two sites appeared to be mutually exclusive, possibly because they are adjacent. With G-actin, and with actin denatured by guanidine hydrochloride, there was also reaction at other sites. The shapes of the esr spectra of F-actin that contained Mg2+, Ca2+, or Mn2+ did not depend on whether labeling was at the C- or N-terminal positions, although F-actin labeled in the latter position contained a small proportion of highly mobile label, possibly a result of denaturation. The reduction in the size of the esr signal of labeled G-actin on replacing Mg2+ with Mn2+ did not appear to be dependent on the position of labeling.  相似文献   

7.
An important index of neutrophil function is the production of superoxide radicals (O2-) upon activation. Thus a development of a new adequate assay of O2- generation measurement is of great interest for phagocyte researchers. The present article considers the quantitative determination of O2- generation based on the interaction of O2- with 1-oxy-2,2,6,6-tetramethyl-4-oxypiperidine producing 4-oxo-2,2,6,6-piperidine-1-oxyl, detected by ESR. The kinetic curve of nitroxyl radical (NR) formation has a linear character. The NR formation rate after a short induction period (appr. 2 min.) approaches 3.3 X 10(-3) M/s, where cell concentration was 4 X 10(5) per ml. Hydroxylamine (3.8 mM) auto-oxidation rate is negligible as compared with activated neutrophils and is equal to 2 X 10(-9) M/s. Sensitivity NR to the presence of superoxide dismutase (SOD) came as evidence that NR formation is due O2- radicals. SOD (10(-7) M) inhibits NR formation by 90%. Hydroxylamine oxidation by O2- is an irreversible reaction--20-min incubation of activated neutrophils with NR do not influence NR concentration. The NR generation rate dependence upon the neutrophil concentration is linear in the cell concentration range from 4 X 10(5 up to 6 X 10(6) per ml. In this range a quantitative measurement of O2- production is suitable. The sensitivity of hydroxylamine assay is close to the sensitivity of chemiluminescent method, but specificity is higher, as SOD inhibits chemiluminescence only by 50%.  相似文献   

8.
Human blood platelets have been labeled with the sulfhydryl-specific spin labels, 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl and 3-maleimido-2,2,5,5-tetramethylpyrrolidine-1-oxyl. First, the ESR spectra of platelets labeled with either reagent revealed two classes of sulfhydryl groups, a mobile class and an immobile class. Second, when spin-labeled platelets were titrated with high concentrations of potassium ferricyanide (greater than 10(-3) M), there was a decrease in the peak heights of the mobile class of sulfhydryl groups due to dipole-dipole exchange. Third, plots of peak heights of the mobile class versus ferricyanide concentration revealed three classes of mobile sulfhydryl groups compared to a single immobile class. This technique may be used to show the relative locations of spin-labeled groups on cell surfaces.  相似文献   

9.
The irreversible conformational change of the immunoglobulin M (IgM) molecule (Waldenstr?m disease) at pH approximately 3 was studied by means of spin-labels introduced in the carbohydrate (2,2,6,6,-tetramethyl-4-aminopiperidine-1-oxyl) and peptide (2,2,5,5,-tetramethyl-3-(dichloro-symm.-triazinylamino)-pyrrolidine-1-oxyl) moieties of the molecule. A marked rise of structure density of IgM especially in the (Fc)5-region and some minor local conformational changes in the Fab-regions were found. Comparison of our findings with the published data shows that Fab-regions of the principal immunoglobulins are rigid structures. Steric hindrance for Fab-regions increases markedly in the row Fab--F(ab')2--IgG--IgA--IgM restricting their spatial mobility. Monomeric Fc-regions of IgM are evidently flexible and one of the domains is especially mobile. It is supposed that oligosaccharide groups of IgM are of two types which differ in their spatial mobility. It was found by ammonium sulfate precipitation of IgM spin-labeled at the peptide moiety that the relative mobility of amino acid residues coupled with spin-label is strongly restricted.  相似文献   

10.
C Coan  S Keating 《Biochemistry》1982,21(13):3214-3220
The labeling kinetics of sarcoplasmic reticulum ATPase with the iodoacetamide spin probe N-(1-oxy-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide were followed under conditions designed to selectively label all reactive groups. Approximately 1 mol of spin-label reacted per one 100 000-dalton ATPase chain, indicating only one residue on the enzyme had been labeled. One uniform rate of labeling was observed in the presence of Ca2+. When substrate was then added, approximately one-half of the residues showed a 10-fold increase in labeling rate while the remaining residues reacted at the initial, slower rate. Sequential labeling experiments further established that the two labeling rates correspond to the coexistence of two conformational state of the enzyme. Both Ca2+ and substrate are required to obtain an equal distribution between states, and the effect is completely reversed when substrate is removed. The iodoacetamide spin probe is known to be highly sensitive to the conformation of the ATPase binding pocket, and the residue labeled here is the one which generates broadening in the electron paramagnetic resonance spectrum on substrate binding. Due to the unique selectively of the labeling reaction, it is suggested that when both substrate and Ca2+ are bound to the enzyme, conditions which are precursory to enzyme phosphorylation, two specific conformations of the binding pocket exist in approximately at 50:50 ratio.  相似文献   

11.
C Narasimhan  C S Lai 《Biochemistry》1989,28(12):5041-5046
Changes in local environment of the free sulfhydryl groups in plasma fibronectin upon adsorption of the protein to polystyrene beads have been examined by electron spin resonance (ESR) spin-label spectroscopy. The two free sulfhydryl groups per subunit of plasma fibronectin were modified chemically with an [15N, 2H]maleimide spin-label. For soluble fibronectin, both free sulfhydryl groups are shown to be in confined environments as evidenced from the labeled protein exhibiting a strongly immobilized ESR spectrum as described previously using [14N, 1H]maleimide spin-labels [Lai, C.-S., & Tooney, N. M. (1984) Arch. Biochem. Biophys. 228, 465-473]. When the labeled protein was adsorbed to the beads, half of the strongly immobilized component was found to convert into a weakly immobilized component, a result indicating that one of the two labeled sites becomes exposed and exhibit a fast tumbling motion. Experiments conducted using various spin-labeled fibronectin fragments suggest that the newly exposed labeled site is located between the DNA-binding and the cell-binding regions of the molecule. The data obtained indicate that, upon adsorption to polystyrene beads, plasma fibronectin undergoes a conformational change through which the buried free sulfhydryl group near the cell-binding region of the molecule is exposed. This observation may have important implications regarding the expression of cell adhesive properties of the fibronectin molecule.  相似文献   

12.
A new assay for superoxide radicals is based on the interaction of hydroxylamine (1-oxy-2,2,6,6-tetramethyl-4-oxopiperidine) with superoxide, giving rise to a stable nitroxide radical. Working concentration ranges of hydroxylamine and cells are determined. It was shown that the amount of superoxide generated was proportional to the concentration of nitroxide radicals. The sensitivity and specificity of the proposed assay were compared to chemiluminescence and cytochrome-c reduction.  相似文献   

13.
Three human plasma proteins contain intramolecular thioester bonds: complement components C3 and C4 and alpha 2-macroglobulin. Their thioesters form when glutamine and cysteine residues react in the newly translated proteins and ammonia is released. We have reversed this reaction by treating C3 with ammonia to cleave the thioester and reform the original Gln and Cys. Thioester scission initiates a multistep conformational transition. One intermediate was sufficiently stable to be isolated by high performance liquid chromatography. It lacked native C3 functions and was shown to contain one free sulfhydryl group. Incubation of this ammonia-inactivated C3 intermediate in the absence of ammonia resulted in refolding to a native C3 conformation and recovery of thioester-dependent functions, as evidenced by: 1) return of hemolytic function, 2) return of autolytic cleavage of the alpha-chain, and 3) return of the ability to attach to surfaces during complement activation. Refolding and thioester reformation were dependent on a free SH group and were inhibited by HgCl2 and other thiol-specific reagents. Incubation of ammonia-inactivated C3 at 25 degrees C at pH 7.4 resulted in recovery of 70% of the original C3 function. Refolding and thioester reformation exhibited a Gibbs free energy of +5.2 kcal/mol and were favored over unfolding to the final inactive form. During reformation of native C3 from 14CH3NH2-treated C3, return of the native conformation was accompanied by release of radiolabel from the protein and return of hemolytic complement function. These results suggest that folding of C3 provides both the energy and environment necessary to react the Gln and Cys residues, release ammonia, and form the thioester bond.  相似文献   

14.
Avidin is a tetrametric protein (mass 68,000 daltons) that binds 4 molecules of vitamin biotin (1). The biotin binding sites, 1 per subunit, are grouped in two pairs at opposite ends of the avidin molecule (GREEN, N.M., KONIECZNY, L., TOMS, E.J., and VALENTINE, R.C. (1971) Biochem. J. 125, 781). We have studied the topography of the avidin binding sites with the aid of four spin-labeled analogs of biotin: 4-biotinamido-2,2,6,6-tetramethyl-1-piperidinyloxy (II), 3-biotinamido-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (III), 3-biotinamidomethyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IV), 4-(biotinylglycyl)-amino-2,2,6,6-tetramethyl-1-piperidinyloxy (V). Fluorescence and optical absorption spectroscopy indicated that II to V occupied the same binding sites on avidin as did biotin. The electron spin resonance spectrum of the 4:1 complex between II and avidin contained broad line components characteristic of a highly immobilized spin label. Dipole-dipole interactions between spin labels bound to adjacent sites split each of the three major hyperfine lines into doublets with a separation of 13.8 G. The distance between adjacent bound nitroxide groups was calculated from this splitting to be 16 A. The dissociation of the 4:1 complex between II and avidin was biphasic with approximately half of the labels dissociating at a rate (kdiss equal to 2.51 times 10- minus 4 s- minus 1) that was much faster than the remainder (kdiss equal to 1.22 times 10- minus 5 s- minus 1). The electron spin resonance spectrum of the 2:1 complex between II and avidin clearly showed that, immediately after mixing, the spin labels were distributed in a random fashion among the available binding sites but that they slowly redistributed themselves so that each label bound to a site which was adjacent to an unoccupied site. The final time-independent electron spin resonance spectrum exhibited a splitting 69 G between the low and high field hyperfine lines which is characteristic of a highly immobilized, noninteracting spin label. Spin labels III and IV interacted with avidin in a similar fashion to that described for II with the exception that their dipolar splittings were 11.9 G and 14.2 G, respectively. From these splittings it was estimated that the distance between adjacent avidin-bound nitroxides was 16.7 A for labeled III and 15.7 A for label IV. The electron spin resonance spectrum of label V bound to avidin was characteristic of a noninteracting highly immobilized nitroxide with a maximum splitting of 62 G. The spectrum of V bound to avidin was independent of both time and the amount of bound label. The rate of dissociation of V from a 4:1 complex with avidin was monophasic. A model is proposed in which the recognition site for the heterocyclic ring system of biotin is represented as a cleft located within a hydrophobic depression in the surface of avidin.  相似文献   

15.
Cysteine 949 and glutamine 952 are known to be part of the thiol ester site of each of the four subunits of human alpha 2-macroglobulin (alpha 2M). The hydrolysis of this thiol ester bound to methylamine results in the incorporation of the amine and liberation of a free sulfhydryl group that can be specifically labeled. Therefore, a high-resolution marker specific for the sulfhydryl groups, the monomaleimido Nanogold (Au1.4nm) cluster was used to bind this amino acid. After cryoelectron microscopy, a three-dimensional reconstruction of the alpha 2M-Nanogold conjugates (alpha 2M-Au1.4nm) was achieved, revealing the internal location of the thiol ester sites in the transformed alpha 2M molecules. From this study we propose three possible locations for the cysteine 949.  相似文献   

16.
A novel thiol-specific spin labeling procedure for the protein component (apoprotein B, apoB) of low density lipoproteins (LDLs) is presented. A methanethiosulfonate spin label was used to probe the free cysteine residues of apoB with electron paramagnetic resonance (EPR) spectroscopy. The results indicated that the spin labeled sites are predominantly buried in the LDL particle in two distinct environments that differ in their mobility restrictions. The suitability of thiol-specific labeling for the study of the stability and conformation of apoB was demonstrated in experiments with denaturing agents. The results presented in this work offer a new approach for the matching of EPR data with the primary structure of apoB.  相似文献   

17.
Legume seed lectins specific for N-acetyl-alpha-D-galactosaminyl end groups from Amphicarpaea bracteata, lima bean, Griffonia simplicifolia, Dolichos biflorus, and soybean were compared with respect to binding of several spin-labeled derivatives of D-galactosamine by electron spin resonance and precipitin inhibition analysis. Spin-label II [methyl 2-[[(2,2,5,5-tetramethyl-1-oxopyrrolidin-3-yl) carbonyl]amino]-2-deoxy-alpha-D-galactopyranoside], spin-label III [1-(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)-3-(2,2,6, 6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea], and spin-label IV [1-[4-[[(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)amino]carbonyl]phenyl]-3-(2, 2,6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea] contain 2-N-(oxypiperidinyl) or 2-N-(oxypyrrolidinyl) substituents varying in length and polarity of the linker arm between the glycoside and nitroxide ring. Spin-labels II and III were found to bind very weakly to all the lectins tested (Kd greater than or equal to 1.0 mM). Spin-label IV, containing a planar, nonpolar 2-N-phenyl group, was bound very strongly (Kd = 0.1-0.4 mM) and was moderately immobilized (2T parallel = 48-56 G) by all lectins except that from D. biflorus. Notably, the affinity of spin-label IV to lima bean lectin was 18-fold greater than that for methyl N-acetyl-alpha-galactosaminide. These results suggest that when the bulky oxypiperidinyl moiety lies in a position close to the sugar ring, it interferes with binding; in the cases where a phenyl group spacer exists, the aromatic ring in some cases actually enhances binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A new, highly reactive, thiol-specific spin label, (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)methanethiosulfonate was synthesized. Its unique specificity was demonstrated with the active thiol protease, papain, which was stoichiometrically inhibited within 5 min, resulting in a conformationally sensitive spectrum, which was identical over the pH range 4.5–7.5. The spin-label modification yielded a mixed disulfide between Cys 25 of papain and the 3-methylpyrroline nitroxide which was rapidly and completely reversed by exposing the labeled papain to mild concentrations of dithiothreitol. The concentration of released nitroxide corresponded exactly to the number of reactive thiol groups in the original enzyme. Full enzymatic activity was restored after the spin label was removed. This spin label is useful as a sensitive thiol titrating agent as well as a specific conformational probe of thiol site structure by virtue of its minimal rotational freedom and distance from the covalent disulfide linkage to the macromolecule under study.  相似文献   

19.
A method for the quantitation of the superoxide radical generation rate (V) in murine liver nuclei by the oxidation of 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine O2-. radicals with the formation of a stable nitroxyl radical recorded by the EPR method, has been developed. It was shown that NADP- and NADPH-dependent superoxide radical generation is suppressed by superoxide dismutase (approximately by 90%). The Km values for NADH and NADPH are 1.5 x 10(-6) and 4.4 x 10(-7) M, respectively; the maximal rate (0.2 nmol.min-1.mg protein-1) is equal for both substrates. Cyanide (greater than 2 mM) causes a practically complete inhibition of the O2-. generation by both substrates. It is suggested that there exists a single readily autooxidized site of O2-. generation by both substrates for NADH- and NADPH-dependent site of the electron transport chain in nuclear membranes.  相似文献   

20.
Fluorescence energy transfer experiments were used to measure distances between three fluorescently labeled sulfhydryl sites on Escherichia coli carbamoyl-phosphate synthetase, an unsymmetrical dimer. When five different combinations of fluorescent donor-acceptor pairs are used, the distance between site 1, located on the large subunit, and site 2, located on the small subunit, is in the range of 27-33 A. Similarly, the distance between site 1 and site 3 (large subunit) was approximately 27 A and between site 2 and site 3 was approximately 21 A. A similar approach was employed to determine distances between each sulfhydryl group and the ATP site(s), and in all cases no fluorescence quenching was observed using Cr3+ATP or Co(NH3)4ATP as substrate analogues. A lower limit could be calculated from these data, resulting in a distance of greater than or equal to 21 A from each sulfhydryl site to the ATP site. Additional experiments were performed to evaluate if the substrates ATP, HCO3(-), or glutamine or the allosteric modifiers ornithine, IMP, and UMP altered the distance relationships among the sulfhydryl sites. IMP and UMP produced a slight decrease in fluorescence between sites while glutamine and ATP produced a slight increase in fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号