首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper describes the isolation and linkage mapping of two isoforms of skeletal muscle myosin heavy chain in pig. Two partial cDNAs (pAZMY4 and pAZMY7), coding for the porcine myosin heavy chain-2B and -β respectively, have been isolated from a pig skeletal muscle cDNA library. Four RFLPs were detected with the putative porcine skeletal myosin heavy chain-2B probe (pAZMY4) and one RFLP was identified with the putative myosin heavy chain-β probe (pAZMY7). Two myosin heavy chain loci were mapped by linkage analysis performed with the five RFLPs against the PiGMaP linkage consortium ResPig database: the MYH1 locus, which identifies the fast skeletal muscle myosin heavy chain gene cluster, was located at the end of the map of porcine chromosome 12, while the MYH7 locus, which identifies the myosin heavy chain-α/-β gene cluster, was assigned to the long arm of porcine chromosome 7.  相似文献   

2.
Myosin is one of the most important skeletal muscle proteins. It is composed of myosin heavy chains and myosin light chains that exist with different isoforms coded by different genes. We studied the porcine myosin heavy chain 2B (MYH4) and the porcine skeletal muscle myosin regulatory light chain 2 (HUMMLC2B) genes. A single nucleotide polymorphism (SNP), identified for each gene, was used for linkage mapping of MYH4 and HUMMLC2B to porcine chromosome (Sscr) 12 and Sscr 3, respectively. The mapping of these two genes was confirmed by using a porcine-rodent radiation hybrid panel, even if for MYH4 the LOD score and the retention fraction were low. Allele frequencies at the two loci were studied in a sample of 307 unrelated pigs belonging to seven different pig breeds. Moreover the distribution of the alleles at these two loci was analysed in groups of pigs with extreme divergent (positive and negative) estimated breeding values (EBV) for four meat production traits that have undergone selection in Italian heavy pigs.  相似文献   

3.
A purification procedure for fish myosin heavy chain is described. The protein was injected into rabbits for production of antibodies. The specificity of the antibodies was determined by immunoblotting. The enzyme-linked immunosorbent assay technique was applied to quantify myosin heavy chain bound to isolated polyribosomes of epaxial muscle from fish.  相似文献   

4.
Summary We have constructed and characterized for the first time a complementary DNA (cDNA) clone, pHMC3, which codes for a cardiac myosin heavy chain mRNA from human heart. This clone contains a 1.7 kb DNA segment and specifies 543 amino acids of the carboxyl portion of the myosin heavy chain. The DNA sequence and encoded amino acid sequence were compared to the hamster alpha (pVHC1) and beta (pVHC2/pVHC3) cardiac myosin heavy chain cDNA and amino acid sequences and the rat cardiac myosin heavy chain sequences as well. The myosin heavy chain mRNAs are highly conserved and this is reflected in our cDNA clone. The pHMC3 clone is 87.9% homologous to the hamster alpha cDNA and 92.2% homologous to the hamster beta cDNA clones. The 3 untranslated region of pHMC3 is 64.1% homologous to the hamster beta clone while the hamster alpha myosin heavy chain shows only 25% homology to pHMC3 and exhibits extensive diversity. Similar results rere obtained when pHMC3 was compared to the rat cardiac myosin heavy chain cDNA sequences. The comparisons showed that pHMC3 is a beta cardiac myosin heavy chain cDNA clone.  相似文献   

5.
The actin-activated Mg(2+)-ATPase activities of Acanthamoeba myosins I are known to be maximally expressed only when a single threonine (myosin IA) or serine (myosins IB and IC) is phosphorylated by myosin I heavy chain kinase. The purified kinase is highly activated by autophosphorylation and the rate of autophosphorylation is greatly enhanced by the presence of acidic phospholipids. In this paper, we show by immunofluorescence and immunoelectron microscopy of permeabilized cells that myosin I heavy chain kinase is highly concentrated, but not exclusively, at the plasma membrane. Judged by their electrophoretic mobilities, kinase associated with purified plasma membranes may differ from the cytoplasmic kinase, possibly in the extent of its phosphorylation. Purified kinase binds to highly purified plasma membranes with an apparent KD of approximately 17 nM and a capacity of approximately 0.8 nmol/mg of plasma membrane protein, values that are similar to the affinity and capacity of plasma membranes for myosins I. Binding of kinase to membranes is inhibited by elevated ionic strength and by extensive autophosphorylation but not by substrate-level concentrations of ATP. Membrane-bound kinase autophosphorylates to a lesser extent than free kinase and does not dissociate from the membranes after autophosphorylation. The co-localization of myosin I heavy chain kinase and myosin I at the plasma membrane is of interest in relation to the possible functions of myosin I especially as phospholipids increase kinase activity.  相似文献   

6.
Frog myosin is a labile molecule, undergoing irreversible aggregation and rapid loss of ATPase; however, a procedure is described which provides highly purified myosin, with stable solubility and enzymatic properties, from skeletal muscle of Rana catesbeiana. Frog myosin contains heavy chains and light chains 1, 2, and 3. Light chain 3 is present in excess over light chain 1, and light chain 2 may occur as either, or both, of 2 closely migrating bands. On two-dimensional electrophoresis, light chain 1 generates an isoelectric component with pK 5.60; light chain 2 generates a complex pattern with 3 or 4 major components; and light chain 3 generates 2 major components with pK 5.00 and 4.92. The same subunit composition is obtained for frogs acclimated at 25 and 5 degrees C; however, proteolytic artifacts may occur in myosin preparations purified in the absence of protease inhibitors, especially in warm-acclimated frogs.  相似文献   

7.
1. Actomyosin extracts of trunk, heart, and head muscles from barbel (Barbus barbus L.) were analyzed by SDS-polyacrylamide gel electrophoresis to study their myosin heavy chain composition. 2. Four heavy chain isoforms were found: trunk white, trunk red, and ventricle muscles yielded one heavy chain typical of the muscle type; head muscles devoid of red fibers displayed two heavy chain isoforms, the slow migrating one corresponding to the trunk white muscle type. 3. The electrophoretic mobility of red and ventricle myosin heavy chains related to that of white isoforms appeared highly modified by the glycerol content of the gels.  相似文献   

8.
Brush border myosin I from chicken intestinal microvilli is a membrane-associated, single-headed myosin composed of a 119-kDa heavy chain and several calmodulin light chains. We first describe in detail a new procedure for the rapid purification of brush border myosin I in greater than 99% purity with a yield of 40%, significantly higher than for previous methods. The subunit stoichiometry was determined to be 4 calmodulin light chains/myosin I heavy chain by amino acid compositional analysis of the separated subunits. We have studied the effects of Ca2+ and temperature on dissociation of calmodulin from myosin I and on myosin I Mg2(+)-ATPase and contractile activities. At 30 degrees C the actin-activable ATPase activity is stimulated 2-fold at 10-700 microM Ca2+. Dissociation of 1 calmodulin occurs at 25-50 microM Ca2+, but this has no effect on actin activation. The contractile activity of myosin I, expressed as superprecipitation, is greatly enhanced by Ca2+ under conditions in which 1 calmodulin is dissociated. This calmodulin is thus not essential for actin activation or superprecipitation. Myosin I was found to be highly temperature-sensitive, with an increase to 37 degrees C resulting in dissociation of 1 calmodulin at below 10(-7) M Ca2+ and an additional 1.5 calmodulins at 1-10 microM Ca2+. A complete loss of actin activation accompanies the Ca2(+)-induced calmodulin dissociation at 37 degrees C. Our conclusion is that physiological levels of Ca2+ can either stimulate or inhibit the mechanoenzyme activities of brush border myosin I in vitro, with the mode of regulation determined by the number of associated calmodulin light chains.  相似文献   

9.
The actin-activated Mg2(+)-ATPase activities of myosins I from Acanthamoeba castellanii are fully expressed only when a single amino acid on their heavy chain is phosphorylated by myosin I heavy chain kinase. Here we show that kinase isolated by a procedure designed to minimize its phosphorylation during purification can incorporate up to 7.5 mol of phosphate/mol of enzyme when incubated with ATP, possibly by autophosphorylation. The rate of phosphorylation is enhanced about 20-fold by phosphatidylserine but is unaffected by calcium ions. Phosphorylation increases the rate at which the kinase phosphorylates the regulatory site of myosin I by about 50-fold. These results suggest that (auto?)phosphorylation may regulate the activity of myosin I heavy chain kinase in vivo. The stimulation of kinase phosphorylation by phosphatidylserine (other phospholipids have not yet been tested) is of particular interest because myosin I has been shown to be tightly associated with membranes, especially the plasma membrane.  相似文献   

10.
11.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

12.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

13.
P K Umeda  R Zak  M Rabinowitz 《Biochemistry》1980,19(9):1955-1965
Fast and slow myosin heavy chain mRNAs were isolated by indirect immunoprecipitation of polysomes from 14-day-old embryonic chick leg muscle. The antibodies were prepared against myosin heavy chains purified by NaDod-SO4-polyacrylamide gel electrophoresis and were shown to be specific for fast and slow myosin heavy chains. The RNA fractions directed the synthesis of myosin heavy chains in a cell-free translation system from wheat germ. Several smaller peptides were also synthesized in lower concentrations. These probably are partial products of myosin heavy chains, since they are immunoprecipitated with antibodies to myosin heavy chains. Immunoprecipitation of the translation products with the antibodies to fast and slow myosin heavy chains showed the RNA preparations to be approximately 94% enriched for fast myosin heavy chain mRNA and approximately 84% enriched for slow myosin heavy chain mRNA with respect to myosin HC type. Peptides having slightly different mobilities on NaDodSO4-polyacrylamide gels were immunoprecipitated by antibodies to fast and slow myosin heavy chains.  相似文献   

14.
A high molecular-weight protein from Escherichia coli sharing structural homology at the protein level with a yeast heavy-chain myosin encoded by the MYO1 gene is described. This 180 kD protein (180-HMP) can be enriched in cell fractions following the procedure normally utilized for the purification of non-muscle myosins. In Western blots this protein cross-reacts with a monoclonal antibody against yeast heavy-chain myosin. Moreover, antibodies raised against the 180 kD protein cross-react with the yeast myosin and with a myosin heavy chain from chicken. Recognition by anti-180-HMP antibodies of an overexpressed fragment of yeast myosin encoded by MYO1 allows the localization of one of the shared epitopes to a specific region around the ATP binding site of the yeast myosin heavy chain. The existence of a high molecular-weight protein with structural similarity to myosin in E. coli raises the possibility that such a protein might generate the force required for movement in processes such as nucleoid segregation and cell division.  相似文献   

15.
The assembly of myosins into filaments is a property common to all conventional myosins. The ability of myosins to form filaments is conferred by the tail of the large asymmetric molecule. We are studying cloned portions of the Dictyostelium myosin gene expressed in Escherichia coli to investigate functional properties of defined segments of the myosin tail. We have focused on five segments derived from the 68-kD carboxyl-terminus of the myosin tail. These have been expressed and purified to homogeneity from E. coli, and thus the boundaries of each segment within the myosin gene and protein sequence are known. We identified an internal 34-kD segment of the tail, N-LMM-34, which is required and sufficient for assembly. This 287-amino acid domain represents the smallest tail segment purified from any myosin that is capable of forming highly ordered paracrystals characteristic of myosin. Because the assembly of Dictyostelium myosin can be regulated by phosphorylation of the heavy chain, we have studied the in vitro phosphorylation of the expressed tail segments. We have determined which segments are phosphorylated to a high level by a Dictyostelium myosin heavy chain kinase purified from developed cells. While LMM-68, the 68-kD carboxyl terminus of Dictyostelium myosin, or LMM-58, which lacks the 10-kD carboxyl terminus of LMM-68, are phosphorylated to the same extent as purified myosin, subdomains of these segments do not serve as efficient substrates for the kinase. Thus LMM-58 is one minimal substrate for efficient phosphorylation by the myosin heavy chain kinase purified from developed cells. Taken together these results identify two functional domains in Dictyostelium myosin: a 34-kD assembly domain bounded by amino acids 1533-1819 within the myosin sequence and a larger 58-kD phosphorylation domain bounded by amino acids 1533-2034 within the myosin sequence.  相似文献   

16.
Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba   总被引:6,自引:0,他引:6  
We have isolated a non-muscle myosin heavy chain gene from Acanthamoeba castellanii using as a heterologous probe a sarcomeric myosin heavy chain gene from Caenorhabditis elegans. The amoeba genomic clone has been tentatively identified as containing a myosin II heavy chain gene based on hybridization to a 5300-nucleotide RNA species, hybrid selection of a mRNA encoding a 185-kDa polypeptide, specific immunoprecipitation of this polypeptide with antiserum to myosin II, and an exact match between the DNA sequence and a carboxyl-terminal myosin II peptide previously sequenced by protein chemical methods (C?té, G.P., Robinson, E.A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). We also sequenced a region of the gene whose deduced amino acid sequence shows strong homology with that region of muscle myosins which is thought to be involved in nucleotide binding. These results indicate that the amoeba genomic clone contains at least 90% of the coding information for the 185-kDa heavy chain polypeptide and that the bulk of the gene contains very little intron DNA. Genomic blots of amoeba DNA probed with a portion of this myosin gene indicate the presence of additional highly related sequences within the amoeba genome.  相似文献   

17.
A low-molecular-weight myosin has been purified 1500-fold from extracts of Dictyostelium discoideum, based on the increase in K+,EDTA-ATPase specific activity. The purified enzyme resembles the single-headed, low-molecular-weight myosins IA and IB from Acanthamoeba castellanii, and differs from the conventional two-headed, high-molecular-weight myosin previously isolated from Dictyostelium, in several ways. It has higher K+,EDTA-ATPase activity than Ca2+-ATPase activity; it has a native molecular mass of about 150,000 and a single heavy chain of about 117,000; the 117,000-dalton heavy chain is phosphorylated by Acanthamoeba myosin I heavy chain kinase; phosphorylation of its heavy chain enhances its actin-activated Mg2+-ATPase activity; and the 117,000-dalton heavy chain reacts with antibodies raised against the heavy chain of Acanthamoeba myosin IA. None of these properties is shared by the low-molecular-weight active fragment that can be produced by chymotryptic digestion of conventional Dictyostelium myosin. We conclude that Dictyostelium contains an enzyme of the myosin I type previously isolated only from Acanthamoeba.  相似文献   

18.
19.
RAW 264.7 macrophages express nonmuscle myosin heavy chain II-A as the only significant nonmuscle myosin heavy chain isoform, with expression of nonmuscle myosin heavy chain II-B and II-C low or absent. Treatment of the cells with sodium butyrate, an inhibitor of histone deacetylase, led to the dose-dependent induction of nonmuscle myosin heavy chain II-C. Trichostatin A, another inhibitor of histone deacetylase, also induced nonmuscle myosin heavy chain II-C. Induction of nonmuscle myosin heavy chain II-C in response to these histone deacetylase inhibitors was attenuated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. Bacterial lipopolysaccharide alone had no effect on basal nonmuscle myosin heavy chain II-C expression, but attenuated butyrate-mediated induction of nonmuscle myosin heavy chain II-C. The effects of lipopolysaccharide were mimicked by the nitric oxide donors sodium nitroprusside and spermine NONOate, suggesting a role for nitric oxide in the lipopolysaccharide-mediated down-regulation of nonmuscle myosin heavy chain II-C induction. This was supported by experiments with the inducible nitric-oxide synthase inhibitor 1400W, which partially blocked the lipopolysaccharide-mediated attenuation of nonmuscle myosin heavy chain induction. 8-Bromo-cGMP had no effect on nonmuscle myosin heavy chain induction, consistent with a cGMP-independent mechanism for nitric oxide-mediated inhibition of nonmuscle myosin heavy chain II-C induction.  相似文献   

20.
The interactions of smooth muscle myosin and its light chains have been examined by incubating sodium dodecyl sulfate-polyacrylamide gels of myosin with radioactively labeled regulatory or essential light chains. The technique involves sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fixation with methanol and acetic acid followed by an extensive series of washes. The gel is incubated overnight with labeled light chains in the presence of bovine serum albumin and then washed extensively to remove unbound protein. Following staining and destaining, the gel is autoradiographed to reveal which protein bands have bound light chain. The myosin heavy chain was able to rebind labeled regulatory or essential light chains despite the harsh procedure described above. By fragmenting the myosin heavy chain proteolytically, we were able to determine the binding site for both types of light chains to be within the 26,000-Da COOH-terminal segment of smooth muscle subfragment 1 (S-1) or the 20,000-Da COOH-terminal segment of skeletal muscle S-1. The extent of binding was 0.1-0.4 mol of light chain/mol of S-1 heavy chain. No binding was observed to portions of the myosin molecule which do not contain this segment such as myosin rod, light meromyosin, S-2, or the NH2-terminal 75,000-Da segment of S-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号