首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

2.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

3.
The effect of Ca2+ and ammonia on mitochondrial NADH-glutamatedehydrogenase (GDH: EC 1.4.1.2 [EC] ) isolated from turnip root (Brassicarapa L.) activity was examined. Increasing the ammonia [(NH4)2SO4]concentration led to significant substrate inhibition whichcould be reversed by micromolar levels of Ca2+. The sensitivityof the enzyme to ammonia inhibition and its reversal by Ca2+was affected by proteolysis. After treatment with various proteases,lower concentrations of Ca2+ were capable of fully activatingthe enzyme or overcoming the inhibitory effects of high ammonium,compared to non-treated enzyme. However, the protease-treatedenzyme was still sensitive to ethylene glycol-bis(ß-aminoethylether) N,N,N',N'-tetraacetate (EGTA). In contrast, NADH-GDHactivity was inhibited approx. 30% by organic mercurials (200µm), but the residual activity was not affected by thesubsequent additions of EGTA. NADH-GDH activity could also bestimulated by additions of high concentrations of NaCl (300mM) in the absence of added Ca2+. These results suggest thathydrophobic and -SH groups may be involved in the regulationof mitochondrial NADH-GDH activity by Ca2+. 2 Present address: CSIRO Division of Horticulture, Urrbrae,S.A. 5064, Australia (Received April 18, 1990; Accepted July 23, 1990)  相似文献   

4.
Levels of glutamate dehydrogenase (GDH) [L-glutamate: NAD oxidoreductase(deaminating), EC 1.4.1.2 [EC] ] from safflower roots and cotyledonsincreased (?2.7) and decreased ( ?5.7), respectively, as a functionof seedling age. No significant changes in enzyme levels weredetected during hypocotyl development. GDH preparations of thedifferent organs were resolved by polyacrylamide gel electrophoresisinto 2 to 4 isozymes. The isozymic pattern was influenced byseedling age and organ tested. The slowest moving isozyme (No.1) appears to be responsible for the changes in GDH levels observedin cotyledons and roots. We isolated isozyme 1 and GDH fractionchiefly containingisozyme 2, by DEAE-cellulose chromatography. GDH was purified approximately 53-fold from the particulatefraction of cotyledons. The pH optima for NADH and NAD activitieswere 8.2 and 8.9, respectively. Michaelis constants were foundto be: -ketoglutarate, 8mM; glutamate, 4 mM; ammonium, 35.4mM; NAD, 0.26 mM; NADH, 0.065 mM. Km values of isozymes 1 and2 were similar. The binding order of substrates in die reductiveamination reaction was NADH, -ketoglutarate and NH4+. (Received July 17, 1972; )  相似文献   

5.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

6.
Glutamate dehydrogenase was partially purified from grapevine(Vitis vinifera L. cv. Soultanina) tissues and its activityand isoenzymic pattern were studied. Seven anodal migratingisoenzymes were revealed after PAGE. Leaf protoplasts were isolatedfrom in vitro-grown axenic shoot cultures and used to studythe intracellular localization of GDH. Results revealed thatthe enzyme was associated with the mitochondrial fraction. Theisoenzyme with the lowest electrophoretic mobility, which accountedfor 35 to 40% of total activity, was purified 2050-fold to homogeneityfrom leaves. The purification method included ammonium sulphatefractionation, DEAE-cellulose chromatography, Sephadex G-200gel filtration and NAD-sepharose affinity chromatography. Themolecular weight of the native enzyme was estimated to be 252kDa and it consisted of identical 42.5 kDa subunits. pH optimumfor the aminating reaction was 8.0 and for the deaminating reaction9.3. At optimum pH conditions the apparent Km values for ammonium,as ammonium chloride and ammonium sulphate, -ketoglutarate,NADH, glutamate, and NAD+ were 45.0, 13.0, 2.1, 0.069, 18.0,and 0.195 mM, respectively. The amination reaction of GDH wasfully activated with about 100 µM Ca2+ while the deaminationreaction was not affected by the addition of Ca2+. The isoenzymesof GDH showed different magnitude of their activating responseto calcium ions. Key words: Vitis vinifera L., glutamate dehydrogenase  相似文献   

7.
NADP-glutamate dehydrogenase (EC 1.4.1.4 [EC] ; NADP-GDH) was purifiedto electrophoretic homogeneity from the multinuclear-unicellulargreen marine alga in Sipho-nales, Bryopsis maxima, and its propertieswere examined. Mr of the undenatured enzyme was 280 kDa, andthe enzyme is thought to be a hexamer of 46 kDa subunit protein.Optimum pHs for the reductive amination and oxidative deaminationwere 7.5 and 8.2-9.0 respectively. The enzyme displayed NADPH/NADH-specificactivities with a ratio of 18 :1. Apparent Km values for 2-oxoglutarate,ammonia, NADPH, glutamate and NADP+ were 3.0, 2.2, 0.03, 3.2and 0.01 mM respectively. The enzymochemical characteristicsof the GDH were studied and compared to those of other species.The B. maxima GDH was insensitive to 5 mM Ca2+ and to 1 mM EDTAin contrast to higher plant NAD-GDHs. Chemical modificationswith DTNB and pCMBS suggested that cysteine residues are essentialfor the enzymatic activity as in other species GDHs. The GDHwas not affected by 1 mM purine nucleotides, suggesting thatthe enzyme is not allosteric, in contrast to animal NAD(P)-GDHsand fungal NAD-GDHs. (Received August 12, 1996; Accepted January 7, 1997)  相似文献   

8.
SYNOPSIS. Crayfish have a long evolutionary history in temperatefresh water (FW). Ion regulation is challenged by low externalconcentrations of Na, Cl, and Ca (<1 mM). In intermolt theprimary concern is Na and Cl balance; around ecdysis the emphasisswitches to Ca regulation as the cuticle is decalcified/calcified.Compared with marine crustaceans, intermolt crayfish maintaina reduced extracellular (EC) osmolality and have lower permeabilityto both ions and water. Hyperregulation involves active branchialuptake of Na and Cl and the unique ability to produce a hypotonicurine. Ion uptake involves apical electroneutral ion exchange(Na$ for H$; Cl for HCO3–; counterions providedfrom CO2 via carbonic anhydrase) followed by active basolateraltransport of Na via the Na pump, with Cl following passively.Reabsorption of 95% of filtered electrolytes at the antennalgland (kidney) involves similar subcellular mechanisms in amorphologically differentiated region of the distal tubule.Intermolt crayfish exhibit negative Ca balance (passive effluxunopposed by uptake) tolerable in view of the large cuticularCaCO3 reserve. In premolt, cuticular Ca is reabsorbed. A smallamount is stored as gastroliths, the remainder is lost via branchialexcretion and in the discarded exuviae. At ecdysis, FW uptakegenerates the physical force for shedding, leaving the crayfishwith dilute hemolymph and a Ca deficiency. Levels of EC Na andCl are restored by intensive postmolt branchial uptake. Mineralizationof the soft exoskeleton involves remobilization of stored Caand branchial uptake of Ca and HCO3. Transepithelial Ca transportinvolves Ca2$ ATPase and Ca2$/Na$ exchange. The importance ofexternal electrolytes and pH in postmolt ion regulation is explored,as are some allometric considerations.  相似文献   

9.
Enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11 [EC] ) activityis differentially induced by anoxia in the flood-tolerant speciesE. phyllopogon (Stev.) Koss and the flood-intolerant speciesE. crus-pavonis (H.B.K.) Schult. To examine the regulation ofenolase at the protein level, we purified the enzyme from bothspecies to near homogeneity and compared their physico-chemicaland catalytic properties. Enolase purified from E. phyllopogonexhibits optimal activity at pH 7.0, a Km of 80 µM for2-PGA, a Q10 of 1.97 and an Ea of 12.3 kcal mol-1. Similarly,enolase from E. crus-pavonis exhibits optimal activity at pH7.0, a Km of 50 µM for 2-PGA, a Q10 of 2.04 and an Eaof 12.9 kcal mol-1. The enzyme from both species is thermostable(100% active after 15 min, 50°C) and is a homodimer of 52.5kDa subunits as resolved by SDS-PAGE and immunoblotting. E.phyllopogon enolase was phosphorylated in vitro using either[  相似文献   

10.
Spinach chloroplasts catalyzed ATP formation from acetyl phosphateand ADP when exposed to light. No ATP formation was detectablein the dark. In the absence of ADP, chloroplasts did not hydrolyzeacetyl phosphate in the light or dark. Neither high-energy phosphatessuch as creatine phosphate and phosphoenol pyruvate nor inhibitorsof photophosphorylation competitive with Pi, such as ß-naphthylmonophosphate, phenyl phosphate and pyridoxal 5-phosphate, couldsubstitute for acetyl phosphate as a Pi donor. The apparentKm values for acetyl phosphate and Pi were 0.81 mM and 0.25mM, respectively. The maximal rate of ATP formation with acetylphosphate and Pi were 331 and 521 µmol ATP formed mg chl–1hr–1, respectively. The optimum pH value for acetyl phosphate-dependentATP formation was about 8.0. NH4Cl, dicyclohexylcarbodiimideand triphenyltin chloride inhibited the acetyl phosphate-dependentATP formation. Acid-base transition also could induce subsequentATP formation from acetyl phosphate and ADP. These results suggestthat the acetyl phosphate-dependent ATP formation requires theformation and the utilization of a proton-motive force as ordinaryphotophosphorylation does. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H. S. Part of this work was reported at the 1981 AnnualMeeting of the Japanese Society of Plant Physiologists (Sapporo,May 8, 1981). (Received August 25, 1981; Accepted November 1, 1981)  相似文献   

11.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

12.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

13.
The oxygen-evolving activity of chloroplasts was lost by Tris(pH8.8)-washing and restored by 2,6-dichlorophenol indophenol treatmentand light exposure. One function of light was the generationof a high-energy state (pH) in chloroplasts, because the additionof uncouplers such as carbonylcyanide-m-chlorophenylhydrazone,atebrin, NH4Cl, gramicidin J(S), valinomycin, A23187 [GenBank] and tetracaineinhibited restoration of the oxygen-evolving activity. The generationof a high-energy state in these chloroplasts was proven by thelight-induced H+-incorporation and uncoupler-stimulated electrontransport of the Mehler reaction type. (Received February 15, 1981; Accepted May 12, 1982)  相似文献   

14.
Carbonic anhydrase (CA, EC. 4.2.1.1 [EC] ) activity in air-grown Characorallina was detected mainly in the intracellular fraction,most of which composed of chloroplasts and cytoplasmic gel,and not on the cell surface. Only minor levels of CA activity,on the basis of equivalent volumes, were detected in the cellsap and the cytoplasmic sol. The maximum rate of photosynthetic O2 evolution by air-grownChara corallina at pH 6.0 was twice that at pH 7.6, while theapparent Km for external inorganic carbon (Ci) at pH 7.6 wasabout three times that at pH 6.0. However, the apparent Km(CO2)was about three times larger at pH 6.0 than at pH 7.6. The Km(Ci)-valueat pH 7.6 increased severalfold in the presence of acetazolamide(AZA), an inhibitor of CA, but no inhibition was observed atpH 6.0. The pH-dependence may be due to differences in the permeabilityof AZA at the given pH values. Fixation of 14CO2 at 20 µMand of H14CO3 at 200 µM over the course of 5 swas very similar at pH 7.4. Addition of CA significantly suppressedthe photosynthetic 14CO2-fixation but it stimulated the H14CO3-fixation.This result indicates that free CO2 is an active species ofCi that is incorporated into the cell during photosynthesis. These results together suggest the following: (1) Free CO2 isutilized for photosynthesis, (2) CA is mainly located insidethe cell and functions to increase the affinity for CO2 in photosynthesisby facilitating the supply of CO2 from the plasmalemma to thesite of CO2-fixation. 3Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Chiba, 260 Japan. (Received December 9, 1988; Accepted March 22, 1989)  相似文献   

15.
Reactivation of photosynthetic oxygen-evolution was investigatedwith chloroplasts inhibited by 0.8 M Tris-, 0.8 M Tris-20% acetone-,0.8 M KCl-, 0.5 M NaClO4- or 1 mM NH2OH-washing, and with heat-treatedor aged chloroplasts. These chloroplasts restored oxygen evolvingactivity by two successive treatments; incubation of chloroplastswith reduced DPIP, then with Mn2$, Ca2$, dithiothreitol andbovine serum albumin under weak illumination (light-reactivation). Some factors required for light-reactivation could be omitteddepending on the inhibition treatment. For example, Mn2$, Ca2$and dithiothreitol were not necessary for (1 mM NH2OH-STN (pH7.0)-washed)-DPIP-treated chloroplasts, and dithiothreitol for(Tris-acetone (pH 8.4)-washed)-DPIP-treated chloroplasts. Uncouplers, such as atebrin, CCCP, DCCD and NH4Cl, inhibitedthe lightreactivation. The Mn and Ca contents of the chloroplasts were determined withinhibited and DPIP-treated chloroplasts. The Mn content of thechloroplasts tended to decrease with increasing pH of the washingmedium for inhibition. The Ca content decreased when chloroplastswere washed with 0.8 M KCl. (Received November 22, 1974; )  相似文献   

16.
Two varieties of wheat (Triticum aestivum L.) a winter (Kharkov)and a spring (Glenlea), were acclimated under controlled conditionsat 5 °C and 25 °C (12 h photoperiod). Kinetic properties(Km1 Vmax/Km ratio and Q10 as a function of reduction of substrateconcentration) were investigated for enzymatic systems involvedin two pathways of proline metabolism: the glutamic acid andthe ornithine pathways. Four enzymes were studied, namely prolinedehydrogenase (PDH, EC 1.5.1.2 [EC] ), glutamate dehydrogenase (GDH,EC 1.4.1.2 [EC] -4), glutamine synthetase (GS, EC 6.3.1.2 [EC] ) and ornithinetransaminase (OT, EC 2.6.1.13 [EC] ). Kinetic properties of thesefour enzymes proved to be modulated by cold acclimation, especiallyin Kharkov, the winter cultivar, which accumulates proline.Firstly, the synthesis of precursors of proline may be augmentedand the degradation of proline lessened by either decreasingthe Km values of OT or increasing the Km values of PDH. Secondly,the catalytic efficiency (Vmax ratio) of GDH, GS, and OT isincreased. Thirdly, the lower values of Q10 indicate a highcapacity of reaction of GS and OT.  相似文献   

17.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

18.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

19.
Effects of removal of external Ca2+ on the cytoplasmic pH (pHc)of Chara corallina have been measured with the weak acid 5,5-dimethyl-oxazolidine-2,4-dione(DMO) as a function of external pH (pH0) and of the externalconcentration of K+. Removal of Ca2+ always decreased pHc whenpH0 was below about 6.0; the decrease was about 0.2–0.4units at pH0 5.0, increasing to about 0.5 units at pH0 4.3.When pH0 was 6.0 or higher the removal of Ca2+ had little orno effect on pHc. This situation was not altered by changingthe concentration of K+, though in some experiments at pH0 5.0–5.2there was a slight decrease in pH0 (about 0.2 units) when K+was increased from 0.2 to 2.0 mol m–3, an effect apparentlyreversed when K+ was higher (5.0 or 10.0 mol m–3). Theresults suggest that H+ transport continues in the absence ofexternal Ca2+, despite previous suggestions to the contrary,and that the H+ pump does not necessarily run near thermodynamicequilibrium with its chemical driving reaction. They indicate,rather, that the H+ pump is under kinetic control and providefurther evidence for the inadequacy of present models for theoperation of the H+ pump in charophyte cells, especially inrelation to its proposed role in regulating pHc. Key words: Chara corallina, Cytoplasmic pH, Calcium  相似文献   

20.
At constant external [CO2], rates of dark-CO2 fixation of theunicellular green alga Eremosphaera viridis were drasticallyincreased (up to 40-fold) by addition of ammonium (NH3+ NH4+)at external pH values (pH0) between 6.0 and 8.0. The cytosolicpH was monitored under identical conditions by micro-pH-electrodemeasurements, and cytosolic and vacuolar pH by the 31P-NMR technique.Addition of ammonium (5.0 mol m pH0 7.0) caused a rapidand transient acidification of the cytosol during the first4 min. Thereafter, the cytosolic pH remained constant at itsoriginal value. A rather constant cytosolic pH was also confirmedby 31P-NMR measurements, which, in addition, indicated a slowalkalization of the vacuole (about 0.5 units within 30 min afteraddition of ammonium). Since the dramatic stimulation of dark-CO2 fixation by ammoniumis not mediated by an alkalization of the cytosol, nor by directammonium effects on phosphoenolpyruvate carboxylase (PEPC, E.C.4.1.1.31 [EC] ), the role of vacuolar alkalization as a possible triggerfor the stimulation of PEP-carboxylase is discussed. Key words: Cytosolic pH, dark-CO2 fixation, pH-regulation, vacuolar pH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号