首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Apolipoprotein (apo) B-100 is a key protein compound of plasma lipid metabolism. This protein, as a sole component of LDL particles, to a great extent controls the homeostasis of LDL cholesterol in the plasma. Therefore, this protein and its structural variants play an important role in development of hyperlipidemia and atherosclerosis. Intensive research into the structure and biological functions of apoB-100 has led to identification of its complete structure as well as the responsible binding sites. With the development of the methods of molecular biology, some structural variants of the apoB-100 protein that directly affect its binding properties have been described. These are mutations leading to amino acid substitution at positions 3500 (R3500Q and R3500W) and 3531 (R3531C) that have been shown to decrease the binding affinity of apoB-100 in vitro. However, only the former mutations have been unequivocally demonstrated to cause hyperlipidemia in vivo. This minireview is aimed to discuss the impact of apoB-100 and its structural variants on plasma lipid metabolism and development of hyperlipidemia.  相似文献   

4.
PURPOSE OF REVIEW: Apolipoprotein M is a recently described apolipoprotein predominantly associated with high-density lipoprotein, but also found in chylomicrons, very low-density lipoproteins, and low-density lipoprotein. The purpose is to review recent information on the unusual structural properties of apolipoprotein M and its possible role in formation of pre-beta high-density lipoprotein and reverse cholesterol metabolism. RECENT FINDINGS: Apolipoprotein M is a lipocalin having a coffee filter-like structure with a hydrophobic ligand-binding pocket. Mature apolipoprotein M retains its signal peptide, which serves as a hydrophobic anchor. In mice, silencing of expression in the liver with siRNA led to disappearance of pre-beta high-density lipoprotein and appearance of unusually large high-density lipoproteins. This suggests that apolipoprotein M is important for the formation of pre-beta high-density lipoprotein and reverse cholesterol transport. In accordance with this idea, hepatic overexpression of apolipoprotein M with an adenovirus in low-density lipoprotein-receptor deficient mice led to an approximately 70% reduction of atherosclerosis. In addition to the liver, apolipoprotein M is also expressed in the kidney. Kidney-derived apolipoprotein M binds to megalin, a member of the low-density lipoprotein-receptor family, which interacts with many lipocalins in renal tubuli. Apolipoprotein M is excreted in the urine of mice with a kidney-specific megalin deficiency but not in the urine of normal mice, suggesting megalin-mediated uptake of apolipoprotein M in the tubular epithelium of normal mice. SUMMARY: Apolipoprotein M is a novel apolipoprotein with unusual structural features that appears to play important roles in high-density lipoprotein metabolism and prevention of atherosclerosis.  相似文献   

5.
Scavenger receptor class B, type I (SR-BI) is the high density lipoprotein (HDL) receptor essential for hepatic uptake of HDL cholesterol. SR-BI was shown to impact plasma HDL levels and be anti-atherogenic. Thus, the ability to regulate hepatic SR-BI may allow for the modulation of plasma HDL cholesterol and progression of atherosclerosis. However, regulation of SR-BI in liver is not well understood. Recently, the PDZ domain containing protein PDZK1 was shown to interact with SR-BI and may serve an essential role in SR-BI cell surface expression. Here we identify an in vivo PDZK1-interacting protein that we named small PDZK1-associated protein (SPAP; also known as DD96/MAP17). Unexpectedly, we found that hepatic overexpression of SPAP in mice resulted in liver deficiency of PDZK1. The absence of PDZK1 in SPAP transgenic mice resulted in a deficiency of SR-BI in liver and markedly increased plasma HDL. Metabolic labeling experiments showed that the proteasome plays a role in the turnover of newly synthesized PDZK1, but that SPAP overexpression in liver increased PDZK1 turnover in an alternate, proteasome-independent pathway. Thus, SPAP may be an endogenous regulator of cellular PDZK1 levels by regulating PDZK1 turnover.  相似文献   

6.
7.
Influence of probucol on cholesterol and lipoprotein metabolism in man   总被引:1,自引:0,他引:1  
The mechanisms for the hypocholesterolemic action of probucol were examined in 17 patients with various levels of plasma cholesterol and triglycerides (TG). All the patients were studied on a metabolic ward. The first period of 6 weeks was for control. Thereafter, probucol was started, and after 2-6 months of drug treatment, the patients were readmitted for another 6-week period for a repeat study. During treatment with probucol, the cholesterol decreased in total plasma by an average of 12%, in low density lipoproteins (LDL) by 11%, and in high density lipoproteins (HDL) by 9%. The TG in total plasma and in very low density lipoproteins (VLDL) remained unchanged during probucol treatment. Turnover of low density lipoprotein apoprotein (apoLDL) was estimated following injection of 125I-labeled apoLDL. Probucol increased the fractional catabolic rate (FCR) for apoLDL by an average of 23%, but did not change apoLDL synthesis. The drug produced no consistent changes in fecal excretion of cholesterol (neutral steroids) and bile acids, in cholesterol absorption, in lipid composition of gallbladder bile, in biliary secretion of cholesterol and bile acids, or in the activities of lipoprotein lipase and hepatic lipase. These data show that probucol lowers LDL by increasing its catabolism. This effect appears to be independent of any changes in metabolism of cholesterol or bile acids.  相似文献   

8.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

9.
10.
凝血素样氧化低密度脂蛋白受体结构与动脉粥样硬化   总被引:1,自引:0,他引:1  
动脉粥样硬化(As)早期改变是内皮功能紊乱,新型受体-植物凝集素样氧化型低密度脂蛋白受体-1(LOX-1)在氧化低密度脂蛋白(Ox-LDL)诱导的内皮功能紊乱过程中起关键性作用.LOX-1主要在内皮细胞表达,其结构和功能与其他可吞噬ox-LDL的清道夫受体显著不同,但与自然杀伤细胞受体却高度一致.目前对LOX-1基因和蛋白结构以及功能尚不完全清楚.因此,进一步研究LOX-1的功能及其表达的调控机制,不仅有助于了解脂代谢和As发病机制,对心血管病防治也有十分重要的意义.本文对LOX-1其结构、功能及其调控因素等最新研究进行综述.  相似文献   

11.
In the past several years significant advances have been made in our understanding of lecithin-cholesterol acyltransferase (LCAT) function. LCAT beneficially alters the plasma concentrations of apolipoprotein B-containing lipoproteins, as well as HDL. In addition, its proposed role in facilitating reverse cholesterol transport and modulating atherosclerosis has been demonstrated in vivo. Analysis of LCAT transgenic animals has established the importance of evaluating HDL function, as well as HDL plasma levels, to predict atherogenic risk.  相似文献   

12.
Carboxyl ester lipase (CEL), previously named cholesterol esterase or bile salt-stimulated (or dependent) lipase, is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, tri-, di-, and mono-acylglycerols, phospholipids, lysophospholipids, and ceramide. The active site catalytic triad of serine-histidine-aspartate is centrally located within the enzyme structure and is partially covered by a surface loop. The carboxyl terminus of the protein regulates enzymatic activity by forming hydrogen bonds with the surface loop to partially shield the active site. Bile salt binding to the loop domain frees the active site for accessibility by water-insoluble substrates. CEL is synthesized primarily in the pancreas and lactating mammary gland, but the enzyme is also expressed in liver, macrophages, and in the vessel wall. In the gastrointestinal tract, CEL serves as a compensatory protein to other lipolytic enzymes for complete digestion and absorption of lipid nutrients. Importantly, CEL also participates in chylomicron assembly and secretion, in a mechanism mediated through its ceramide hydrolytic activity. Cell culture studies suggest a role for CEL in lipoprotein metabolism and oxidized LDL-induced atherosclerosis. Thus, this enzyme, which has a wide substrate reactivity and diffuse anatomic distribution, may have multiple functions in lipid and lipoprotein metabolism, and atherosclerosis.  相似文献   

13.
In this review, the authors discuss the formation and structure of high-density lipoproteins (HDLs) and how those particles are altered in inflammatory or stress states to lose their capacity for reverse cholesterol transport and for antioxidant activity. In addition, abnormal HDLs can become proinflammatory (piHDLs) and actually contribute to oxidative damage. The assay by which piHDLs are identified involves studying the ability of test HDLs to prevent oxidation of low-density lipoproteins. Finally, the authors discuss the potential role of piHDLs (found in some 45% of patients with systemic lupus erythematosus and 20% of patients with rheumatoid arthritis) in the accelerated atherosclerosis associated with some chronic rheumatic diseases.  相似文献   

14.
Diabetes is a major risk factor for cardiovascular disease. To examine how diabetes interacts with a mildly compromised lipid metabolism, we introduced the diabetogenic Ins2C96Y/+ (Akita) mutation into mice expressing human apoE4 (E4) combined with either an overexpressing human LDL receptor gene (hLDLR) or the wild-type mouse gene. The hLDLR allele caused 2-fold reductions in plasma HDL-cholesterol, plasma apoA1, and hepatic triglyceride secretion. Diabetes increased plasma total cholesterol 1.3-fold and increased apoB48 secretion 3-fold, while reducing triglyceride secretion 2-fold. Consequently, diabetic E4 mice with hLDLR secrete increased numbers of small, cholesterol-enriched, apoB48-containing VLDL, although they have near normal plasma cholesterol (<120 mg/dl). Small foam cell lesions were present in the aortic roots of all diabetic E4 mice with hLDLR that we analyzed at six months of age. None were present in nondiabetic mice or in diabetic mice without hLDLR. Aortic expression of genes affecting leukocyte recruitment and adhesion was enhanced by diabetes. ApoA1 levels, but not diabetes, were strongly correlated with the ability of plasma to efflux cholesterol from macrophages. We conclude that the diabetes-induced proinflammatory changes in the vasculature and the hLDLR-mediated cholesterol accumulation in macrophages synergistically trigger atherosclerosis in mice with human apoE4, although neither alone is sufficient.  相似文献   

15.
16.
Recirculating organ perfusion in vitro was conducted with hearts from control rats, animals given a single dose of streptozotocin (65 mg/kg) 48 h earlier, and streptozotocin-treated rats administered insulin (5 units), 2 h prior to organ perfusion. During 45-min perfusions, the lipolysis of very low density lipoprotein (VLDL) triglyceride was significantly less in hearts from diabetics than in controls (41.9 +/- 7.3% of control). This was associated with significant reductions in heparin-releasable (functional) lipoprotein lipase and tissue lipoprotein lipase of perfused hearts. The decreases in VLDL triglyceride metabolism and the levels of myocardial lipoprotein lipase were completely reversed by treatment of diabetic rats with insulin 2 h prior to study. Similar improvement of VLDL triglyceride metabolism and increases in myocardial lipoprotein lipase activity were observed in hearts from diabetic rats by direct addition of 100 milliunits/ml of insulin to the recirculating perfusion media. Under these conditions, the increase in both fractions of lipoprotein lipase in response to insulin was completely inhibited, and utilization of VLDL triglyceride was partially inhibited by pre-perfusion with cycloheximide for 10 min. The data derived from either VLDL triglyceride lipolysis in organ perfusion or direct measurement of myocardial lipoprotein lipase demonstrate a direct effect of insulin on myocardial lipoprotein lipase activity, and suggest that the response to insulin may be due in part to effects on protein synthesis.  相似文献   

17.
18.
Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

19.
20.
High density lipoprotein metabolism   总被引:21,自引:0,他引:21  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号