首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high level expression and purification of rat monoamine oxidase B (rMAOB) in the methylotrophic yeast Pichia pastoris is reported. Nearly 100 mg of purified rMAOB is obtained from 130 g (wet weight) of cells (0.5 L of culture). The MALDI-TOF mass spectrum of the purified protein shows a single species with a molecular mass of 59.228 ± 0.064 kDa, which agrees with the calculated molecular weight of 59.172 kDa for the rMAOB protein sequence assuming one mole of covalent FAD per mole of the enzyme. Consistent with the MALDI-MS data, purified rMAOB shows a single band near 60 kDa in Coomassie-stained SDS–PAGE gel as well as on Western blot analyses performed using antisera raised against human MAOA and BSA-conjugated FAD. A partial amino acid sequence of the purified protein is confirmed to be that of the wild type rMAOB by in-gel trypsin digestion and MALDI-TOF-MS analyses of the liberated peptide fragments. Steady state kinetic data show that purified rMAOB exhibits a Km(amine) of 176 ± 15 μM and a kcat of 497 ± 83 min−1 for benzylamine oxidation, and a Km(O2) of 170 ± 10 μM. Kinetic parameters obtained for purified rMAOB are compared with those reported earlier for recombinant human liver MAOB expressed in P. pastoris.  相似文献   

2.
We evaluated 15-hydroxyeicosatetraenoic acid (15-HETE), a major arachidonic acid product of vascular endothelium and leukocytes, for its effect on neovascularization. In a modified Boyden chamber assay, 15-HETE (10−7 M) sitmulated human retinal microvessel endothelial cell migration by 42 ± 10% (mean ± S.E.M., p<0.01). 12-HETE, a major arachidonic acid metabolite of platelets, had no such effect. Further studies in the rabbit corneal pocket assay revealed that 15-HETE stimulated neovascularization . Concentrations at which the effects were observed are within the range generated by several cell types and are achievable in human serum. 15-HETE stimulation of human endothelial cell migration and neovascularization suggests that it may play a role in vasoproliferative disorders.  相似文献   

3.
P-selectin is a cell adhesion molecule expressed on activated endothelial cells and platelets. P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin expressed on leukocytes. The interaction of P-selectin and PSGL-1 mediates leukocyte tethering to and rolling on the vascular surface, which are initiating events in inflammatory and thrombotic processes. In the hemodynamic environment of the circulation, P-selectin and PSGL-1 are subject to a wide range of forces, which can cause deformation. For P-selectin/PSGL-1 interaction to be physically possible, these molecules may need to project above much of the glycocalyx layers of the respective cell surfaces, suggesting that they are either longer than the thickness of glycocalyx or better able to support compression than the glycocalyx. As such, the mechanical properties of these molecules and their functional implications merit investigation. Here we report determination of the bending rigidities of P-selectin and PSGL-1 by analyzing their thermally excited curvature fluctuations, whose values are of the order of magnitude of 100 pN nm2.  相似文献   

4.
Olaveson  M. M.  Nalewajko  C. 《Hydrobiologia》2000,433(1-3):39-56
Our study separates the effects of elevated protons (at pH <3) and elevated metals (Al, Cd, Cu, Fe, Ni, Zn) on the growth of E. mutabilis Schmitz, a pioneering phototroph in acid mine drainage (AMD) and E. gracilis Klebs, a closely-related species rarely found in severely AMD-impacted sites. Both species were acid tolerant, growing optimally at pH 2.5–7. At pH values typical of AMD (pH 2.5–4) in the absence of elevated metals, E. gracilis outcompeted E. mutabilis (growth rates of 1.0 and 0.8 div d–1, respectively). Relative metal toxicities were evaluated based on the Effective Exposure causing 50% growth reduction (= EE50). With total metal additions similar to AMD levels, E. mutabilis demonstrated significantly greater tolerance to all metals, except Cu. E. gracilis showed two-fold higher tolerance to Cu2+ than E. mutabilis (EE50 of 91.6 vs. 45.7 pmol cell–1). The EE50 for Zn2+ was similar for both species (368 pmol cell–1 for E. gracilis and 423 pmol cell–1 for E. mutabilis). With Cd and Ni, E. mutabilis tolerated an order of magnitude higher exposure than E. gracilis(EE50 of 1.6 vs. 0.2 pmol Cd2+ cell–1; EE50 of 942 vs. 87 pmol Ni2+ cell–1). Al and Fe were tolerated at high total metal concentrations (up to 100 mM) by E. mutabilis, but toxicity was evident with E. gracilisat much lower levels. E. mutabilis grew at double the Al3+ exposure tolerated by E. gracilis (EE50 of 398 vs. 188 pmol Al3+ cell–1). There was an 18-fold difference in Fe tolerance levels between E. mutabilis and E. gracilis with EE50s of 8773 and 502 pmol Fe2+ cell–1, respectively. We conclude that differential metal tolerance, particularly to Fe2+, accounts for the mutually exclusive distribution of E. gracilis and E. mutabilis in AMD-impacted habitats.  相似文献   

5.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

6.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   

7.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

8.
Nannochloropsis gaditana was grown in semicontinuous culture with a circadian light:dark cycle in a flat-panel photobioreactor. The microalga had a maximal protein content (3 pg cell–1) after 6 h light and then only storage compounds were accumulated that were consumed during the dark phase. Carbohydrates reached their maximum value after 8 h (0.8 pg cell–1) and lipids after 12 h light (2.5 pg cell–1). The results demonstrated that young or adult microalgae might be obtained according to the time of day.  相似文献   

9.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) fromLaccaria bicolorwas purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE–Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate–polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at −75°C, 4 days at 4°C, and 1 h at 50°C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at −75°C. NAD-GDH activity was stimulated by Ca2+and Mg2+but strongly inhibited by Cu2+and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 μM, 89 μM, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and itsKmvalue increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid.  相似文献   

10.
Differential pulse voltammetry combined with electrochemically treated carbon fibre microelectrodes was used to monitor endogenous serotonin release occurring during platelet aggreagtion. After platelet stimulation by thrombin, an oxidation peak was recorded at +280 mV. HPLC analyses performed with fluorimetric detection have shwon that this released electroactive compound was essentially serotonin. Moreover, serotonin measurements in the same samples by the technique reported here and by fluorimetry were found to be very similar (1.15 ± 0.30 μM and 1.17 ± 0.15 μM (mean ± dS.D., n = 6), respectively). Extracellular serotonin concentrations could be estimated either directly during aggregation or in supernatants obtained from stimulated or lysed platelets. Maximal serotonin concentrations have been found to be 6.93 ± 0.37 and 3.28 ± 0.39 nmol/109 platelets from rat and human, respectively. Using the reported procedure, we have observed that no serotonin was released from thrombin-stimulated platelets prepared from rats treated with reserpine. Our new technique represents a selective and performant tool for rapid determination of endogenous serotonin platelet secretion.  相似文献   

11.
The extracellular β-agarase LSL-1 produced by an agar-liquefying, soil bacterium Acinetobacter sp., AG LSL-1 was purified to homogeneity by combination of ion-exchange and size exclusion chromatography with final yield of 44%. The enzyme has a specific activity of 397 U mg−1 protein and with a molecular mass of 100 kDa. The agarase was active in the pH range of 5.0–9.0, optimally at pH 6.0 and temperature between 25 °C and 55 °C and optimal at 40 °C. The enzyme retained 63% of native activity at 50 °C suggesting it is a thermostable. The activity of the agarase was completely inhibited by metal ions, Hg2+, Ag+ and Cu2+, whereas 25–40% of native activity was retained in the presence of Zn2+, Sn2+ and SDS. Neoagarobiose was the final product of hydrolysis of both agarose and neoagarohexaose by the purified agarase LSL-1. Based on the molecular mass and final products of agarose hydrolysis, the β-agarase LSL-1 may be further grouped under group III β-agarases and may be a member of GH-50 family. This is the first report on the purification and biochemical characterization of β-agarase from an agar-liquefying Acinetobacter species.  相似文献   

12.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

13.
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a dimeric, mucin-like, transmembrane glycoprotein constitutively expressed on leukocytes. A high baseline level of P-selectin expression in circulating equine platelets suggests a primed state toward inflammation and thrombosis via P-selectin/PSGL-1 adhesion. To investigate the potential role of equine P-selectin in these events, we first identified the cDNA sequence of equine PSGL-1 (ePSGL-1) using degenerate PCR and RACE-PCR and then compared the predicted sequence with that of human PSGL-1 (hPSGL-1). ePSGL-1 protein subunit is predicted to be 43 kDa and composed of 420 amino acids with a predicted 18-amino-acid signal sequence showing 78% homology to hPSGL-1. Previously published work has shown that binding of P-selectin requires sulfation of at least one of three tyrosines and O-glycosylation of one threonine in the N-terminus of human PSGL-1. However, the corresponding domain in ePSGL-1, spanning residues 19–43, contains only one tyrosine in the vicinity of two threonines at positions 25 and 41. ePSGL-1 contains 14 threonine/serine-rich decameric repeats as compared to hPSGL-1 which contains 14–16 threonine-rich decameric repeats. The transmembrane and cytoplasmic domains display 91% and 74% homology to corresponding human PSGL-1 domains, respectively. In summary, there is 71% homology in comparing the open reading frame (ORF) of ePSGL-1 with that of hPSGL-1. The greatest homologies between species exist in the transmembrane domain and cytoplasmic tail while substantial differences exist in the extracellular domain.The nucleotide sequence data reported in this article has been submitted to GenBank and assigned the accession number AY298766.  相似文献   

14.
Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (FcαRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLeX), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5–sLeX complex at resolutions of 1.65 and 2.75 Å for crystals at two pH values. In both structures, sLeX bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.  相似文献   

15.
A novel extracellular α-galactosidase, named Aga-F78, from Rhizopus sp. F78 ACCC 30795 was induced, purified and characterized in this study. This soybean-inducible α-galactosidase was purified to homogeneity by ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), with a yield of 14.6% and a final specific activity of 74.6 U mg−1. Aga-F78 has an estimated relative molecular mass of 78 kDa from SDS-PAGE while native mass of 210 kDa and 480 kDa from non-denaturing gradient PAGE. This α-galactosidase had no N- or O-glycosylated. Amino acid sequences of three internal fragments were determined, and fragment 1, NQLVLDLTR, shared high homology with bacterial and fungal GH-36 α-galactosidases. The optimum pH and temperature on activity of Aga-F78 were 4.8 and 50 °C, respectively. The properties of pH and temperature stability, effect of ions and chemicals were also studied. Furthermore, the resistant to neutral and alkaline proteases and substrate specificity of natural substrates (melibiose, raffinose, stachyose and guar gum) were also studied to enlarged the application of Aga-F78 in more fields. Kinetic studies revealed a Km and Vmax of 2.9 mmol l−1 and 246.1 μmol (mg min)−1, respectively, using pNPG as substrate. To our knowledge, this is the first report of purification and characterization of α-galactosidase from Rhizopus with some special properties, which may aid its utilization in the food and feed industries.  相似文献   

16.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

17.
18.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

19.
Cell densities of toxic phytoplankton species responsible for diarrhetic shellfish poisoning (DSP) were monitored at a sampling site in Mutsu Bay, Japan, in 1995.Dinophysis fortii almost completely dominated the toxic phytoplankton community. Okadaic acid (OA) and dinophysistoxin-1 (DTX1) contents in bothD. fortii cells and midgut glands of scallops collected at the same sampling site were determined by HPLC — fluorometry. DTX1 was detected fromD. fortii and scallops. The contents of DTX1 inD. fortii changed markedly during the experimental periods (5–252 pg cell–1). The highest concentration of DTX1 in the midgut glands of scallops coincided with the period of relatively high cell densities ofD. fortii with the highest content of DTX1 (252 pg cell–1). The results demonstrate that toxin content in the cells is an important factor affecting the toxicity of shellfish.  相似文献   

20.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号