首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural characteristics of citric acid-treated rice starch, which was subjected to autoclaving and stored at a high temperature under acidic conditions, were investigated by high performance anion-exchange chromatography, multi-angle laser-light scattering, X-ray diffraction, differential scanning calorimetry (DSC), nuclear magnetic resonance, and scanning electron microscopy. The citric acid-treated rice starch contained chains of different lengths (DP 7−70) and had an A + V type polymorphism. The DSC thermogram of acid-treated rice starch showed a broad endothermic peak, which indicated that the structure of the acid-treated rice starch contained a number of double helices with various melting temperatures. Microscopic observation showed that the internal structure of the acid-treated starch displayed more or less spherical lumps that could be composed of short chains and amylose–lipid complex. The digestive properties of acid-treated rice starch were altered by heat processing such as cooking and autoclaving because crystalline regions were converted to amorphous regions or lamellae.  相似文献   

2.
Yam starch films were produced by thermal gelatinization of starch suspensions using different starch and glycerol concentrations and were compared to control samples without glycerol. Films were characterized by polarized light microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), X-ray diffraction, water vapor permeability (WVP) and water sorption isotherms. The polarized light microscopy and DSC data showed that starch gelatinization for film formation was complete. Plasticized films have a homogeneous structure as observed by SEM. At water activities >0.43, glycerol increased the equilibrium moisture content of the films due to its hydrophilic character. X-ray pattern of the yam films could be assigned to a B-type starch; during storage this pattern remained almost the same, however a slight recrystallization process could be observed. Amylopectin retrogradation was not observed by DSC with storage time of the films. Glass transition temperatures of films with glycerol were lower than those of control films as measured by DSC and TMA. WVP of yam starch films increased with the presence of glycerol.  相似文献   

3.
When amylose was synthesized using potato phosphorylase in the presence of amylose complexing lipids, monodisperse populations of amylose–lipid complexes were formed. Enzyme dosage and glucose-1-phosphate (glc-1-P)/primer ratio influenced the reaction rate of the enzymic synthesis, presumably by changing the balance between amylose synthesis and amylose–lipid complexation and precipitation, and impacted the molecular weight of the complexes. Lipid characteristics affected the dissociation properties and amylose chain lengths of the amylose–lipid complexes presumably by determining the minimal amylose chain length necessary for complexation and precipitation. Tailor made short chain amylose–lipid complexes can hence be produced by choosing the appropriate reaction conditions. We propose a synthesis mechanism in which the primer is elongated until an amylose chain is obtained which is of sufficient length to complex a first lipid. Further chain extension then occurs, together with subsequent complexation until the complex becomes insoluble and precipitates.  相似文献   

4.
Structural, thermal and pasting diversity of starches from Indian and exotic lines of wheat was studied. Majority of the starches showed amylose content ranging between 22% and 28%. Endotherm temperatures (To, Tp and Tc) of the starches showed a range between 56–57, 60 –61 and 65.5–66.5 °C, respectively. Exotherms with Tp between 87.0 and 88.2 °C were observed during cooling of heated starches, indicating the presence of amylose–lipid complexes. Exotherm temperatures were negatively correlated to swelling power. Amylopectin unit chains with different degree of polymerization (DP) were observed to be associated with pasting temperature, setback and thermal (endothermic To, Tp, and Tc) parameters. Amylopectin unit chains of DP 13–24 showed positive relationship with endothermic To, Tp and Tc. Pasting temperature showed positive correlation with short chains (DP 6–12) while negative correlation with medium chain (DP 13–24) amylopectins. Setback was positively correlated to DP 16–18 and negatively to DSC amylose–lipid parameters.  相似文献   

5.
Modification of maize starch by thermal processing in glacial acetic acid   总被引:3,自引:0,他引:3  
Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) methods were used to determine if corn starch–glacial acetic acid mixtures can be melted and thermally processed at reasonable temperatures. DSC studies showed that the melting temperature of dry starch was reduced from about 280 to 180°C in the presence of >30% acetic acid. Glass transition temperatures varied from 110 to 40°C at 15 and 45% acetic acid, respectively. XRD showed the loss of native starch crystallinity and the formation of V-type complexes. Addition of 10% water decreased the melting temperatures to 140–150°C while addition of a base (sodium acetate) had little effect. Some possible applications of processing starch in glacial acetic acid will be discussed.  相似文献   

6.
Standard maize starch was hydrothermally treated by Instantaneous Controlled Pressure Drop (DIC) process at three pressure levels (1, 2 and 3 bar) corresponding to the temperatures of 100, 122 and 135 °C (at 13–27% moisture), respectively. The structural effects of various hydrothermal conditions were examined with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. In order to understand the changes that occur during DIC treatment, melting endotherms of native maize starch at various moisture contents were determined. The gelatinization temperatures of DIC treated standard maize starch increased with DIC treatment. The transition temperatures (To, Tp) are closely related to the combined effect of pressure and processing time. At approximately 10 min of processing time, To and Tp were 65.7 and 72.3, 68.8 and 73.6 °C, 74.8 and 79.8 °C for pressure levels of 1, 2 and 3 bar, respectively (against 63.1 and 69.6 °C for native starch). DIC treatment narrowed the gelatinization temperature range and decreased gelatinization enthalpy (ΔH), as the severity of processing conditions increased. ΔH decreased from 11.4 J g−1 (native) to 11.0 (1 bar), 9.0 (2 bar) and 1.7 J g−1 (3 bar) for treated maize starch during approximately 10 min. Relative crystallinity of hydrothermally treated starch decreased with increasing DIC conditions. The A-type crystalline pattern was progressively lost (at pressure level 2 bar) and substituted by the Vh-type X-ray diffraction pattern, corresponding to the formation of amylose–lipid complexes. For severe DIC conditions (pressure level of 3 bar), the substitution was completed. Microscopic observations revealed progressive loss of the birefringence of DIC treated starch granules except at low pressure (1 bar), while the integrity of starch granules was preserved for all the conditions. These modifications that reveal important changes in the crystalline organization of the starch granules are related to their functional properties.  相似文献   

7.
The aims of this study were to enhance the solubility and dissolution rate of nimodipine (ND) by preparing the inclusion complexes of ND with sulfobutylether-b-cyclodextrin (SBE-β-CD) and 2-hydroxypropyl-b-cyclodextrin (HP-β-CD) and to study the effect of the preparation method on the in vitro dissolution profile in different media (0.1 N HCl pH 1.2, phosphate buffer pH 7.4, and distilled water). Thus, the inclusion complexes were prepared by kneading, coprecipitation, and freeze-drying methods. Phase solubility studies were conducted to characterize the complexes in the liquid state. The inclusion complexes in the solid state were investigated with differential scanning calorimetry (DSC), X-ray diffractometry (X-RD), and Fourier transform infrared spectroscopy (FT-IR). Stable complexes of ND/SBE-β-CD and ND/HP-β-CD were formed in distilled water in a 1:1 stoichiometric inclusion complex as indicated by an AL-type diagram. The apparent stability constants (Ks) were 1334.4 and 464.1 M−1 for ND/SBE-β-CD and ND/HP-β-CD, respectively. The water-solubility of ND was significantly increased in an average of 22- and 8-fold for SBE-β-CD and HP-β-CD, respectively. DSC results showed the formation of true inclusion complexes between the drug and both SBE-β-CD and HP-β-CD prepared by the kneading method. In contrast, crystalline drug was detectable in all other products. The dissolution studies showed that all the products exhibited higher dissolution rate than those of the physical mixtures and ND alone, in all mediums. However, the kneading complexes displayed the maximum dissolution rate in comparison with drug and other complexes, confirming the influence of the preparation method on the physicochemical properties of the products.  相似文献   

8.
Cyclodextrins are able to form host–guest complexes with hydrophobic molecules to result in the formation of inclusion complexes. The complex formation between norfloxacin form A and β-cyclodextrin was studied by exploring its structure affinity relationship in an aqueous solution and in the solid state. Kneading, freeze-drying, and physical mixture methods were employed to prepare solid complexes of norfloxacin and β-cyclodextrin. The solubility of norfloxacin significantly increased upon complexation with β-cyclodextrin as demonstrated by a solubility isotherm of the AL type along with the results of an intrinsic dissolution study. The complexes were also characterized in the solid stated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffractometry, scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (ssNMR) spectrometry. The thermal analysis showed that the thermal stability of the drug is enhanced in the presence of β-cyclodextrin. Finally, the microbiological studies showed that the complexes have better potency when compared with pure drug.KEY WORDS: bioassay, complexation, intrinsic dissolution, norfloxacin, β-cyclodextrin  相似文献   

9.
This study aimed to develop films for potential delivery of omeprazole (OME) via the buccal mucosa of paediatric patients. Films were prepared using hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), sodium alginate (SA), carrageenan (CA) and metolose (MET) with polyethylene glycol (PEG 400) as plasticiser, OME (model drug) and L-arg (stabiliser). Gels (1% w/w) were prepared at 40°C using water and ethanol with PEG 400 (0–1% w/w) and dried in an oven (40°C). Optimised formulations containing OME and L-arg (1:1, 1:2 and 1:3) were prepared to investigate the stabilisation of the drug. Tensile properties (Texture analysis, TA), physical form (differential scanning calorimetry, DSC; X-ray diffraction, XRD; thermogravimetric analysis, TGA) and surface topography (scanning electron microscopy, SEM) were investigated. Based on the TA results, SA and MET films were chosen for OME loading and stabilisation studies as they showed a good balance between flexibility and toughness. Plasticised MET films were uniform and smooth whilst unplasticised films demonstrated rough lumpy surfaces. SA films prepared from aqueous gels showed some lumps on the surface, whereas SA films prepared from ethanolic gels were smooth and uniform. Drug-loaded gels showed that OME was unstable and therefore required addition of L-arg. The DSC and XRD suggested molecular dispersion of drug within the polymeric matrix. Plasticised (0.5% w/w PEG 400) MET films prepared from ethanolic (20% v/v) gels and containing OME: L-arg 1:2 showed the most ideal characteristics (transparency, ease of peeling and flexibility) and was selected for further investigation.KEY WORDS: buccal drug delivery, omeprazole, oral films, paediatric, plasticiser  相似文献   

10.
The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.KEY WORDS: atomic force microscopy, calorimetry (DSC), FTIR, particle size, solid lipid nanoparticles  相似文献   

11.
The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.  相似文献   

12.
The formation of textures in DNA films with LiCl, NaCl, KCl, RbCl, and CsCl salts has been studied. The films are prepared by evaporation of water solution with highly polymerized calf thymus DNA and excess salt of specific type. For DNA solution with 10 mM concentration of NaCl, KCl, and RbCl the films with dendritic textures have been obtained, whereas in case of CsCl the textures in the films appear only at 30 mM concentration of excess salt in the initial solution. In the solution with LiCl, the textures in DNA films have not been observed within the whole range of concentration of excess salt under consideration. The analysis of parameters of DNA films with different salts has showed that evaporation of solution leads to crystallization of salt ions on DNA macromolecule and formation of DNA‐salt complexes. Electrostatic energy of the system of crystalline ordered ions and charges of DNA chains has been estimated to study the stability of DNA‐salt complexes. The results obtained for different salts have been showed that the presence of DNA macromolecule enhances crystallization as compared with solution without DNA. The property of excess salt to form the crystalline structures has been found to decrease in the following order: KCl > NaCl > RbCl > CsCl > LiCl. The results of estimation are in good agreement with the experimentally observed dependence of texture formation on excess salt type. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 508–516, 2013.  相似文献   

13.
Edible films based on carboxymethyl cellulose (CMC) and soy protein isolate (SPI), compatibilized by glycerol, were prepared by solution casting. The effects of CMC content on blend structure, thermal stability, water solubility and water sorption, and mechanical properties were systematically investigated. Fourier transform infrared (FTIR) spectra showed that Maillard reactions occurred between CMC and SPI, and X-ray diffraction (XRD) scans indicated that the Maillard reactions greatly reduced the crystallinity of SPI. According to differential scanning calorimetry (DSC) analysis, CMC/SPI blends had a single glass transition temperature (Tg) between 75 and 100 °C, indicating that CMC and SPI form one phase blends. Increasing the CMC content improved the mechanical properties and reduced the water sensitivity of blend films. The results indicate that the structure and properties of SPI edible films were modified and improved by blending with CMC.  相似文献   

14.
Endosperm of nixtamalized corn was analyzed using X-ray diffraction. Relative crystallinity changed with lime concentration and steeping. Diffractograms showed peaks corresponding to V-type crystalline structures, indicating formation of complexes during cooking and steeping. Diffraction patterns of the soluble fraction showed that complexed amylose can be leached out during solubilization. While diffraction patterns of the insoluble fraction suggested that some of the formed complexes remain in this fraction. During alkali steeping, release of amylose is strongly inhibited as indicated by the pronounced decrease in the starch–I2 absorbance of the lime treated samples compared to the lime-free treated sample. This decrease is interpreted as evidence of starch cross-linking during the nixtamalization process. Differences in starch–I2 absorbance and in X-ray diffraction patterns of the soluble fractions suggested that lime treatment could also modified formation of amylose complexes with lipids.  相似文献   

15.
Starch dextrins of different molecular sizes (DPn 311, 142 and 39) were prepared by hydrolyzing a high amylose maize starch in acidic alcohol solutions. The dextrins were dissolved in an aqueous dimethyl sulfoxide solution (90% DMSO), and then the solution was allowed to migrate down into n-butanol separated by a membrane filter. The complex was gradually formed between the dextrin and butanol, and precipitated in the butanol layer. The dextrin–butanol complex yielded V6-I type crystals with broad reflections (d-spacings 1.123, 0.657 and 0.429 nm) under X-ray diffractograms. Platelets of average length less than 100 nm, interspersed in amorphous matrices, were observed in complexes of DPn 311 and 142, but that of DPn 39 showed different morphology, and the formation of complexes was limited. By hydrolyzing the complex of DPn 311 with α-amylase, amorphous matrices were selectively removed, and crystallites of 23–72 nm showing a V6-I X-ray diffraction pattern were obtained. However, crystallites in complexes of DPn 142 and 39 were eroded by amylolysis, forming large aggregates.  相似文献   

16.
In this work, the moulded cellulose fibers/MPU-20 composites (CFMCs) with apparent specific gravity lower than 100 kg/m3 and thickness of 20–200 mm have been successfully manufactured using a new design of steam injection technology and equipment. It was found that the CFMCs have good cushioning properties, with a cushion factor lower than 4. Two yield deformation stages were observed in the compressive process. Compressive stress–strain and cushion factor-stain curves were measured as a function of steam injection pressure, transmission time, holding time, MPU-20 resin dosage and apparent specific gravity. Chemical groups, crystallinity, and thermal properties of samples were studied through the use of FTIR spectroscopy, X-ray diffraction (XRD), and DTA–TGA. In addition, the microstructure and morphology were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM).  相似文献   

17.
The purpose of this research was to study the effect of the lipid matrix on the entrapment of olanzapine (OL). OL-loaded solid lipid nanoparticles (SLNs) were prepared using lipids like glyceryl monostearate (GMS), Precirol ATO 5 (PRE), glyceryl tristearate (GTS), and Witepsol E85 (WE 85)--and poloxamer 407 and hydrogenated soya phosphatidylcholine as stabilizers--using a hot melt emulsification high-pressure homogenization technique, and then characterized by particle size analysis, zeta potential, differential scanning calorimetry (DSC), and powder X-ray diffraction (pXRD). Homogenization at 10,000 psi for 3 cycles resulted in the formation of SLNs with a mean particle size of approximately 190 nm for the 4 lipids investigated. The highest partition coefficient for OL between the melted lipid and pH 7.4 phosphate buffer (pH 7.4 PB) was obtained with GTS. The entrapment efficiency was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. DSC and pXRD showed that much of the incorporated fraction of OL existed in the amorphous state after incorporation into SLNs. A sharp increase in the flocculation of the SLN dispersions was observed upon addition of 0.6 M aqueous sodium sulfate solution. Nanoparticle surface hydrophobicity was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. A significant increase in size and zeta potential was observed for GTS SLN and WE 85 SLN dispersions stored at 40 degrees C. Release of OL from the SLNs was sustained up to 48 hours in pH 7.4 PB and obeyed Higuchi's release kinetics.  相似文献   

18.
The study was designed to investigate the effect of cyclodextrins (CDs) on the solubility, dissolution rate, and bioavailability of cilostazol by forming inclusion complexes. Natural CDs like β-CD, γ-CD, and the hydrophilic β-CD derivatives, DM-β-CD and HP-β-CD, were used to prepare inclusion complexes with cilostazol. Phase solubility study was carried out and the stability constants were calculated assuming a 1:1 stoichiometry. Solid cilostazol complexes were prepared by coprecipitation and kneading methods and compared with physical mixtures of cilostazol and cyclodextrins. Prepared inclusion complexes were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies. In vitro dissolution study was performed using phosphate buffer pH 6.4, distilled water, and HCl buffer pH 1.2 as dissolution medium. The optimized inclusion complex was studied for its bioavailability in rabbit and the results were compared with those of pure cilostazol and Pletoz-50. Phase solubility study showed dramatic improvement in the solubility of drug by formation of complexes, which was further increased by pH adjustment. The dissolution rate of cilostazol was markedly augmented by the complexation with DM-β-CD. DSC and XRD curves showed sharp endothermic peaks indicating the reduction in the microcrystallinity of cilostazol. Selected inclusion complex was also stable at ambient temperature up to 6 months. The in vivo study revealed that DM-β-CD increased the bioavailability of cilostazol with low variability in the absorption. Among all cilostazol–cyclodextrins complexes, cilostazol–DM-β-CD inclusion complex (1:3) prepared by coprecipitation method showed 1.53-fold and 4.11-fold increase in absorption along with 2.1-fold and 2.97-fold increase in dissolution rate in comparison with Pletoz-50 and pure cilostazol, respectively.  相似文献   

19.
Conducting pathways of the dog solar plexus were studied by recording action potentials from its nerves. The splanchnic nerves are composed of two groups of fast-conducting afferent A fibers (with conduction velocities of 12–15 and 25–56 m/sec), slowly conducting afferent C fibers (0.4–2.0 m/sec), and preganglionic B and C fibers (1.0–12.0 m/sec). Afferent A and C fibers from peripheral nerves run without interruption through the ganglia of the solar plexus, splanchnic nerves, and sympathetic chain and they enter the spinal cord in the composition of the dorsal roots. Cell bodies of A fibers are located in the spinal ganglia, those of the C fibers below the ganglia of the solar plexus, evidently in the walls of the internal organs. Peripheral nerves contain A fibers only with very low conduction velocities (13–20 m/sec) and no fast-conducting A fibers (25–56 m/sec) were found. Preganglionic fibers terminate synaptically on neurons of the ganglia of the solar plexus whose axons run in the peripheral nerves to the internal organs. Synaptic pathways run from some peripheral nerves of the solar plexus into others through its ganglia; in all probability these pathways participate in peripheral reflex arcs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 76–83, January–February, 1976.  相似文献   

20.
16S rRNA gene-based molecular analyses revealed the presence of several large and so far uncultivated clades within class γ-Proteobacteria, designated γ-proteobacterial marine sediment (GMS) clades 1 to 4, in marine sediment. The GMS clades appear only indigenous to marine sediment and so far have an unknown functionality. SYBR Green–based real-time PCR analyses using GMS clade-specific primers indicated GMS clades were a significant part of the bacterial community (0.3–8.7% of total 16S rRNA genes) in both polar and temperate marine sediment samples. Univariate statistical analyses indicated that GMS clade communities were indistinguishable in two temperate coastal sediment samples even though these possessed very different mean grain sizes, organic contents, and organic loading rates. GMS clade communities were slightly different (p < 0.05) between polar and temperate sites, suggesting that psychrophilic adaptation among GMS clade taxa corresponds only to subtle phylogenetic differences. Similar levels of difference were also observed through a sediment core reflecting that through the sediment core history, which spanned ∼3000 years, GMS clonal diversity shifted only marginally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号