首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte ghosts, prepared from rats fed zinc-deficient diets, were analyzed for the mobility of membrane proteins by electron spin resonance spectroscopy of the sulfhydryl-binding spin probe, 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl. Compared with erythrocyte membranes from rats fed zinc-adequate diets ad libitum or pair-fed, erythrocyte membranes from zinc-deficient rats had a significantly increased ratio of weakly immobilized to strongly immobilized probe-binding proteins. This suggests that dietary zinc deficiency causes a conformational change in erythrocyte membrane proteins. Dietary zinc deficiency did not significantly affect N-ethylmaleimide (NEM)-induced thermal sensitivity or NEM-induced mechanical fragility in rat erythrocytes; however, the addition of zinc in vitro to red cells significantly inhibits NEM-induced mechanical fragility.  相似文献   

2.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

3.
Previous studies have shown that deficiencies of zinc and vitamin E, as well as iron excess, contribute to peroxidative damage in several tissues in vivo. The present study reports on the sensitivity of red blood cells from young rats exposed to individual or concurrent imbalances of these three nutrients. For 21 d, rats were fed diets that were either deficient or replete in zinc and with or without excess iron or replete or deficient in vitamin E. When red blood cells from these rats were incubated in vitro, erythrocyte hemolysis, lipid peroxidation (assessed by MDA production), and hemoglobin degradation (assessed by alanine release), did not significantly increase unless vitamin E had been omitted from the diet. These results imply that either adequate tightly-bound zinc exists within the zinc-deficient cell to protect it from oxidative damage, or that other antioxidant defense mechanisms (including vitamin E) present within the plasma membrane and cytosol are sufficient to protect the cell from the otherwise damaging effects of zinc deficiency and/or iron excess.  相似文献   

4.
Quinolinic acid (2,3-pyridinedicarboxylic acid), an endogenous, tryptophan metabolite, is neurotoxic when injected into rat striatum (1). To begin to investigate the molecular interactions of quinolinic acid with membranes, electron spin resonance studies of the effects of this neurotoxin on the physical state of lipids, proteins, and cell-surface sialic acid in human erythrocyte ghosts have been performed. Quinolinic acid induced a highly significant alteration in the physical state of membrane proteins (P less than 0.01) while that of sialic acid and membrane lipids was unaffected. These results are similar to those induced by ibotenic acid, an exogenous neurotoxin, and are discussed with reference to possible molecular characteristics of the interaction of these neurotoxins with membrane proteins.  相似文献   

5.
Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, ethanolamine, and-serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired Δ5 and Δ6 desaturation: linoleic acid and dihomo-γ-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.  相似文献   

6.
The glycophorins of whole, human erythrocytes were labeled at their sialic acid residues with one of three fluorescent probes. After preparation of the erythrocyte ghosts, the mobility of each fluorescent probe on the intact membrane was compared with its mobility on the isolated, labeled glycopeptides dissolved in aqueous buffer. A four- to ninefold decrease in the rotational relaxation time, as defined by the Perrin equation, accompanied the proteolytic removal of the labeled glycopeptides from the membrane. This suggests that the fluorescent probes, and by extrapolation, the sugars to which they are immediately attached, are restricted in their mobility at the membrane surface. A crude model of the carbohydrate layer of the erythrocyte surface was constructed by incorporating the labeled, tryptic glycopeptides into agarose gels of different agarose content. A decrease in the probe's mobility was observed as agarose content was raised. This indicates that the high oligosaccharide density at the erythrocyte membrane surface may contribute to the observed immobilization of the fluorescent probes in situ.  相似文献   

7.
Two groups of 1-month-old pre-ruminant lambs of similar mean liveweights were fed identical liquid milk-replacer diets except that the zinc contents were either 5 micrograms (deficient diet) or 32 micrograms per gram of dry matter (control diet). These diets were fed for 4 weeks, after which all the lambs received the control diet for 2 weeks. In the lambs fed the deficient diet plasma zinc concentration decreased markedly during the first 2 weeks and skin lesions developed around their mouths. Autophagic vacuoles also developed in most follicle bulbs along with a variety of defects in the wool fibres and progressive inhibition of wool growth. Food intake and liveweight increase were not significantly depressed until the third and fourth weeks of feeding the deficient diet. During this period the wool was shed from the zinc-deficient lambs as a result of the fibres being degraded and distorted within thickened outer root sheaths in the distal (upper) parts of the follicles. In addition, the epidermis of the wool-bearing skin became slightly acanthotic and hyperkeratotic, although not parakeratotic. When the deficient lambs were fed the control diet for 2 weeks, their food intake, liveweight gain and plasma zinc concentration increased to almost those of the control lambs, but their rate of wool growth was still low and the epidermis had not returned to normal. Compared with previous studies the findings of this study suggest that pre-ruminant lambs may be more susceptible to the effects of zinc deficiency than ruminant lambs.  相似文献   

8.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

9.
Doxyl stearate spin probes which differed in the attachment of the nitroxide free radical to the fatty acid have been used to study membrane fluidity in ozone-treated bovine erythrocytes and liposomes. Analysis of EPR spectra of spin labels incorporated into lipid bilayer of the erythrocyte membranes indicates an increase in the mobility and decrease in the order of membrane lipids. In isolated erythrocyte membranes (ghosts) the most significant changes were observed for 16-doxylstearic acid. In intact erythrocytes statistically significant were differences for 5-doxylstearic acid. The effect of ozone on liposomes prepared from a lipid extract of erythrocyte lipids was marked in the membrane microenvironment sampled by all spin probes. Ozone apparently leads to alterations of membrane dynamics and structure but does not cause increased rigidity of the membrane.  相似文献   

10.
The present study was designed to clarify the effect of zinc deficiency on sodium chloride preference, the lingual trigeminal and taste nerves transduction, and carbonic anhydrase (CA) activity of the tongue surface and salivary gland. Male SD rats, 4 weeks old, were divided into four groups, and fed zinc-deficient (Zn-Def), low-zinc (Low-Zn), and zinc-sufficient diets with free access (Zn-Suf) and pair-feeding (Pair-fed). After taking part in the preference tests for 42 days, the rats were provided for the chorda tympani and lingual trigeminal nerves recordings, then finally sacrificed and the tongue and submandibular gland excised to measure CA activity. Sodium chloride preference increased only after 4 days of the feeding of zinc-deficient and low-zinc diets, which means that the taste abnormality appears abruptly in zinc deficieny and even though in marginal zinc deficiency. Reduced CA activities of the taste-related tissues in zinc-deficient group paralleled well with the decreased taste and lingual trigeminal nerves sensitivities.  相似文献   

11.
WangFD BianW 《Cell research》2001,11(2):135-141
INTRODUCTIONZinc is essential for normal brain development,evidenced by the fact that zinc deficiency in lactating mothers is characterized by a high incidence ofneuroanatomical maiformatinns and functional abnormalities in suckling offspring[1-3]. By colltrast,relatively little is known about the relationship be{tween maternal zinc nutrition and fetal brain development[2, 4, 5]. Dvergsten et al[6-81 investigated theeffects of maternal zinc deficiency on postnatal development of the rat ce…  相似文献   

12.
Zinc has been implicated in the regulation of prostaglandins and other arachidonic acid derivatives. Studies of zinc-deficient animals, however, are compromised by concomitant reduction in food intake that may also alter eicosanoid levels in body tissues and fluids. In this study, three groups of rats, designated as zinc-deficient, pair-fed and control, were fed diets containing 1 ppm, 15 ppm (in amounts paired to deficient rats) and 15 ppm Zn ad libitum, respectively, for 6 weeks. Saliva and blood were analyzed for PGE2 and TXB2 by radioimmunoassay. Saliva concentrations of both eicosanoids were lower (p less than 0.05) in the pair-fed animals, but not significantly altered by zinc deficiency. Plasma levels of PGE2 and TXB2 were unchanged by either zinc deficiency or food restriction. The results of this study support the contention that the effect of zinc on these prostaglandins is not mediated by altered rates of synthesis or degradation but rather by effects on eicosanoid function.  相似文献   

13.
Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 mug zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was fprobably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.  相似文献   

14.
There is need for a reliable index of zinc status in humans. Considering the importance of zinc in membrane function, activities of erythrocyte membrane enzymes have been measured in animals of low and normal zinc status as possible indices. Immature rats and neonatal pigs were fed low and adequate zinc diets; the latter was fed both ad libitum and restricted so as to control for food intake effects. Low rates of gain and plasma zinc concentrations demonstrated that animals fed the low zinc diets were of low zinc status. Erythrocyte membranes were prepared and assayed for Na,K-ATPase, 5'-nucleotidase, and calcium-ATPase activities. Na,K-ATPase activity was not affected by zinc status, but 5'-nucleotidase was significantly lower in deficient animals of both species than in controls, whose food intake was restricted to maintain comparable weight (2.76 vs 3.94 nmol/hr/mg of protein in rats and 60.5 vs 119 in pigs). The basal calcium-ATPase activities were also decreased by low zinc status in both species. Addition of calmodulin in vitro stimulated activity two-fold to four-fold and resulted in the same maximal activities for all treatments. The results show that erythrocyte membrane 5'-nucleotidase activity is an index of zinc status in these species. It is suggested that the decreased membrane calcium-ATPase activity in zinc deficiency is caused by a defect in calmodulin metabolism.  相似文献   

15.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

16.
Experimental animals fed zinc-deficient diets are well known for susceptibility to infections and impaired mitogen response and Ig production. However, the levels of zinc deficiency used have generally been severe, not comparable to human populations, and have not addressed neutrophil function. To address this issue we have studied the effect in rhesus monkeys of a well defined moderately zinc-deficient (MZ) diet on polymorphonuclear leukocyte (PMN) function. Female adult rhesus monkeys were fed either a control (100 micrograms Zn/g) or MZ (2 micrograms Zn/g) diet for 9 mo with quantitation of PMN chemotaxis, and phagocytosis of opsonized yeast. In addition, membrane potential and secretion responses (changes in 90 degrees light scatter) and changes in PMN shape (forward light scatter shifts) were also measured. When compared to the PMN of animals fed control diets, there was a significant reduction in chemotaxis to FMLP of MZ-fed monkey PMN. Although shape change, cell membrane depolarization, as well as phagocytosis were not significantly different among the two groups, the PMN of MZ animals had significantly lower relative loss of orthogonal light scatter (degranulation) due primarily to a lower resting orthogonal light scatter and also a smaller loss when stimulated with FMLP. In vitro addition of zinc to the cells (25 microM) did not improve chemotaxis, and in fact, was inhibitory for most control and zinc-deficient cells. However, after 2 wk of dietary zinc repletion (100 micrograms Zn/g), chemotaxis in the low zinc group was higher and comparable to the control response. These data indicate that zinc deficiency is associated with an intrinsic PMN defect that specifically affects chemotaxis and is corrected with dietary zinc repletion.  相似文献   

17.
Prenatal and early postnatal zinc deficiency impairs learning and memory and these deficits persist into adulthood. A key modulator in this process may be the NMDA receptor; however, effects of zinc deficiency on the regulation of NMDA receptor activity are not well understood. Female Sprague-Dawley rats were fed diets containing 7 (zinc deficient, ZD), 10 (marginally zinc deficient, MZD) or 25 (control) mg Zn/g diet preconception through postnatal day (PN) 20, at which time pups were weaned onto their maternal or control diet. Regulation of NMDA receptor expression was examined at PN2, PN11, and PN65. At PN2, expression of whole brain NMDA receptor subunits NR1, NR2A, and NR2B was lower in pups from dams fed ZD and MZD compared to controls, as analyzed using relative RT-PCR and immunoblotting. At PN11, whole brain and hippocampi NR1, NR2A, NR2B and PSA-NCAM (polysialic acid-neural cell adhesion molecule) expression and the number of PSA-NCAM immunoreactive cells were lower in pups from dams fed ZD compared to controls. Whole brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) concentrations were lower in pups from dams fed ZD or both low zinc diets, respectively. Whole brain NR1 expression remained lower in previously zinc-deficient rats at PN65. These data indicate potential mechanisms through which developmental zinc deficiency can impair learning and memory later in life.  相似文献   

18.
Zinc status and peripheral nerve function in guinea pigs   总被引:1,自引:0,他引:1  
Guinea pigs fed a diet low in zinc develop clinical signs of apparent neurological origin. The signs include abnormal posture and locomotion as well as hypersensitivity to touch. In this study, electrophysiological and biochemical measurements were made on sciatic nerves from zinc-deficient and repleted animals as well as on controls fed either ad libitum or restricted to maintain weight comparable to those consuming the deficient diet. Both in vivo and in vitro measurements showed decreased motor nerve conduction velocity (NCV) in nerves of deficient animals. A longitudinal study showed excellent correlation of NCV and severity of clinical signs. Nerves from zinc-deficient guinea pigs had decreased Na,K-ATPase activity, but the number of sodium channels, as determined by saxitoxin binding, was not affected. It was concluded that the clinical signs of neuropathy in zinc deficiency are associated with impaired NCV and decreased Na,K-ATPase activity of peripheral nerves. The zinc-deficient guinea pig provides a useful model to study the biochemical defect in a peripheral neuropathy.  相似文献   

19.
Susceptibility to kainate-induced seizures is enhanced by zinc deficiency. To evaluate kainate-induced excitotoxicity in zinc deficiency, the relationship between kainate-induced seizures and hippocampal cell death was examined in control and zinc-deficient mice. Mice were fed a control and zinc-deficient diet for 4 weeks, and then intraperitoneally injected with 12 mg/kg kainate every 60 min three times. The rate of dead mice to the total mice was higher in zinc-deficient group than in control group 3 days after the last injection of kainate. In the survivals, which exhibited tonic convulsions in both control and zinc-deficient groups, kainate-induced hippocampal cell death was also analyzed by cresyl violet staining. Neuronal loss was more observed in the CA1, CA2 and CA3 pyramidal cell layers of zinc-deficient group than those of the control group. TUNEL-positive cells were significantly more detected in the CA1 and CA3 pyramidal cell layers of zinc-deficient group. These results demonstrate that kainate-induced hippocampal cell death occurs more easily in zinc deficiency. Extracellular zinc concentration detected with ZnAF-2 was significantly decreased in the hippocampal CA3 of zinc-deficient mice, in agreement with the previous data measured by in vivo microdialsysis. Synaptically released zinc may be less involved in kainate-induced hippocampal cell death in zinc deficiency.  相似文献   

20.
The aim of this study was to investigate how zinc deficiency and supplementation affects lipid peroxidation in the renal tissue in ovariectomized rats. Four study groups were formed with 10 Spraque-Dawley rats each. Two of the groups served as normal and ovariectomized controls; the other two were ovariectomized rats that were zinc deficient and zinc supplemented, respectively. The zinc-deficient ovariectomized rats showed greater renal and plasma lipid peroxidation, as indicated by higher malondialdehyde levels than all other groups (p<0.05). These values were higher in the ovariectomized controls than those of the normal controls and of the ovariectomized, zinc-supplemented groups (p<0.05), which, in, turn, showed no significant differences of their respective renal and plasma malondialdehyde values. The renal and erythrocyte glutathione levels in the zinc-supplemented rats were higher than those in all other groups (p<0.05). The zinc-deficient group had the lowest renal and erythrocyte glutathione levels (p<0.05). The renal tissue zinc levels in the ovariectomized rats were higher than those in the zinc-deficient animals, but lower than in the normal controls and zincsupplemented rats (p<0.05). The zinc-supplemented animals had the highest renal tissue zinc levels (p<0.05). The results of this study suggest that zinc deficiency increases renal tissue damage in ovariectomized rats and that zinc supplementation can be used to prevent this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号