首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

2.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

3.
作为ChinaFLUX的重要组成部分,从2002年年底开始利用涡度协方差技术在长白山温带混交林林冠上层和下层进行连续通量观测,这为量化林冠下层CO2通量对整个森林生态系统碳收支的贡献提供了一条有效途径.利用2003年林冠上层和林冠下层的观测数据,研究表明林冠下层夜间的CO2通量与5 cm深度的土壤温度存在明显的指数正相关关系.林冠下层的呼吸通量与箱式法观测的土壤呼吸通量之间具有很好的一致性(R2=0.77),二者在全年都与整个森林的光合产物量相耦合,且都在7~8月份达到最大值.林冠下层的呼吸量和土壤呼吸量分别为770 g Cm-2a-1和703 g Cm-2a-1,占整个森林生态系统呼吸年总量的比重高达59.88%和54.69%.林冠下层的光合作用呈双峰型季节变化,两个峰值分别出现在5月中旬和8月下旬.尽管全年林冠下层光合产物量为87 g Cm-2a-1,对整个森林光合产物量的贡献率仅为5.69%,但林冠郁闭度低的4、5月和10月份,林冠下层的光合产物贡献率也分别达到19.99%、21.06%和14.53%.林冠下层净初级生产力的季节动态受该层呼吸作用的季节变异控制,林冠下层在全年都表现为碳源,其净碳排放速率在8月份达到最大.  相似文献   

4.
Continuous and direct measurements of ecosystem carbon dioxide and water vapour fluxes can improve our ability to close regional and global carbon and hydrological budgets. On this behalf, an international and multidisciplinary group of scientists (micrometeorologists, ecophysiologists and biogeochemists) assembled at La Thuile, Italy to convene a workshop on ‘Strategies for Monitoring and Modelling CO2 and Water Vapour Fluxes over Terrestrial Ecosystems’. Over the course of the week talks and discussions focused on: (i) the results from recent field studies on the annual cycle of carbon dioxide and water vapour fluxes over terrestrial ecosystems; (ii) the problems and pitfalls associated with making long-term flux measurements; (iii) alternative methods for assessing ecosystem carbon dioxide and water vapour fluxes; (iv) how direct and continuous carbon dioxide and water vapour flux measurements could be used by the ecological and biogeochemical modelling communities; and (v) if, how and where to proceed with establishing a network of long-term flux measurement sites. This report discusses the purpose of the meeting and summarizes the conclusions drawn from the discussions by the attending scientists. There was a consensus that recent advances in instrumentation and software make possible long-term measurements of carbon dioxide and water vapour fluxes over terrestrial ecosystems. At this writing, eight research teams have conducted long-term carbon dioxide and water vapour flux experiments and more long-term studies are anticipated. The participants advocated an experimental design that would make long-term flux measurement valuable to a wider community of modelers, biogeochemists and ecologists. A network of carbon dioxide and water vapour flux measurement stations should include ancillary measurements of meteorological, ecological and biological variables. To assess spatial representativeness of the long term and tower-based flux measurements, periodic aircraft-based flux experiments and satellite-based assessments of land cover were recommended. Occasional cuvette-based measurements of leaf-level carbon dioxide and water vapour fluxes were endorsed to provide information on the biological control of surface fluxes. They can also provide data to parameterize ecophysiological models. Flask sampling of stable carbon isotopes was advocated to extend the flux measurements to the global scale.  相似文献   

5.
We present results from two years’ net ecosystem flux measurements above a boreal forest in central Sweden. Fluxes were measured with an eddy correlation system based on a sonic anemometer and a closed path CO2 and H2O gas analyser. The measurements show that the forest acted as a source during this period, and that the annual balance is highly sensitive to changes in temperature. The accumulated flux of carbon dioxide during the full two-year period was in the range 480–1600 g CO2 m–2. The broad range is caused by uncertainty regarding assessment of the night-time fluxes. Although annual mean temperature remained close to normal, the results are partly explained by higher than normal respiration, due to abnormal temperature distribution and reduced soil moisture during one growing season. The finding that a closed forest can be a source of carbon over such a long period as two years contrasts sharply with the common belief that forests are always carbon sinks.  相似文献   

6.
Tree photosynthesis modulates soil respiration on a diurnal time scale   总被引:21,自引:0,他引:21  
To estimate how tree photosynthesis modulates soil respiration, we simultaneously and continuously measured soil respiration and canopy photosynthesis over an oak‐grass savanna during the summer, when the annual grass between trees was dead. Soil respiration measured under a tree crown reflected the sum of rhizosphere respiration and heterotrophic respiration; soil respiration measured in an open area represented heterotrophic respiration. Soil respiration was measured using solid‐state CO2 sensors buried in soils and the flux‐gradient method. Canopy photosynthesis was obtained from overstory and understory flux measurements using the eddy covariance method. We found that the diurnal pattern of soil respiration in the open was driven by soil temperature, while soil respiration under the tree was decoupled with soil temperature. Although soil moisture controlled the seasonal pattern of soil respiration, it did not influence the diurnal pattern of soil respiration. Soil respiration under the tree controlled by the root component was strongly correlated with tree photosynthesis, but with a time lag of 7–12 h. These results indicate that photosynthesis drives soil respiration in addition to soil temperature and moisture.  相似文献   

7.
8.
Rice carbon balance under elevated CO2   总被引:1,自引:1,他引:1  
  相似文献   

9.
10.
Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C m?2 yr?1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol m?2 s?1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of ?2.3 μmol m?2 s?1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day‐time NECB just below 1000 μmol m?2 s?1. The analyses of the diurnal and seasonal data and preliminary geological and gas‐geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2‐rich geofluid circulation.  相似文献   

11.
Novel nonstationary and nonlinear dynamic time series analysis tools are applied to multiyear eddy covariance CO2 flux and micrometeorological data from the Harvard Forest and University of Michigan Biological Station field study sites. Firstly, the utility of these tools for partitioning the gross photosynthesis and bulk respiration signals within these series is demonstrated when employed within a simple model framework. This same framework offers a promising new method for gap filling missing CO2 flux data. Analysing the dominant seasonal components extracted from the CO2 flux data using these tools, models are inferred for daily gross photosynthesis and bulk respiration. Despite their simplicity, these models fit the data well and yet are characterized by well‐defined parameter estimates when the models are optimized against calibration data. Predictive validation of the models also demonstrates faithful forecasts of annual net cumulative CO2 fluxes for these sites.  相似文献   

12.
Water vapour and CO2 fluxes were measured using the eddy correlation method above and below the overstorey of a 21-m tall aspen stand in the boreal forest of central Saskatchewan as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Measurements were made at the 39.5-m and 4-m heights using 3-dimensional sonic anemometers (Kaijo-Denki and Solent, respectively) and closed-path gas analysers (LI-COR 6262) with 6-m and 4.7-m long heated sampling tubing, respectively. Continuous measurements were made from early October to mid-November 1993 and from early February to late-September 1994. Soil CO2 flux (respiration) was measured using a LI-COR 6000-09 soil chamber and soil evaporation was measured using Iysimetry. The leaf area index of the aspen and hazelnut understorey reached 1.8 and 3.3, respectively. The maximum daily evapotranspiration (E) rate was 5–6 mm d?1. Following leaf-out the hazelnut and soil accounted for 22% of the forest E. The estimated total E was 403 mm for 1994. About 88% of the precipitation in 1994 was lost as evapotranspiration. During the growing season, the magnitude of half-hourly eddy fluxes of CO2 from the atmosphere into the forest reached 1.2 mg CO2 m?2 s?1 (33 μmol C m?2 s?1) during the daytime. Downward eddy fluxes at the 4-m height were observed when the hazelnut was growing rapidly in June and July. Under well-ventilated night-time conditions, the eddy fluxes of CO2 above the aspen and hazelnut, corrected for canopy storage, increased exponentially with soil temperature at the 2-cm depth. Estimates of daytime respiration rates using these relationships agreed well with soil chamber measurements. During the 1994 growing season, the cumulative net ecosystem exchange (NEE) was -3.5 t C ha?1 y?1 (a net gain by the system). For 1994, cumulative NEE, ecosystem respiration (R) and gross ecosystem photosynthesis (GEP = R - NEE) were estimated to be -1.3, 8.9 and 10.2 t C ha?1 y?1 respectively. Gross photosynthesis of the hazelnut was 32% of GEP.  相似文献   

13.
Compared to other ecosystems, estuarine ecosystems have distinct carbon flux dynamics – the lateral carbon flux incurred by tidal activities, and methane generation under the anaerobic conditions of wetland soils. The conventional estimation of gross primary production (GPP) based on the light use efficiency (LUE) model used for non‐wetland terrestrial ecosystems, therefore, cannot be applied directly to estuarine wetland ecosystems. In this paper, we estimated the 2005's annual carbon budget of an estuarine wetland on Chongming Island, Shanghai, and partitioned the losses of carbon due to lateral tidal dynamics and anaerobic methane production using an innovative technique. The average GPP calculated from eddy covariance between March and November was 261.79 μmol m?2 day?1, whereas that from the LUE model was 58.84 μmol m?2 day?1. The correlation coefficient between GPP simulated from the LUE model and that calculated from flux tower data was low in the growing season (R2=0.55). We hypothesized that tidal activities and uncounted methane release were responsible for the difference, which can be predicted from measurements of remote sensing products such as land surface water index (LSWI), evapotranspiration (ET), and tide height (TH). We developed an integrated GPP model by combining the LUE model and an autoregression model to estimate carbon budget. The average GPP from the modified model increased to 263.38 μmol m?2 day?1, and R2 for the correlation between the simulated and calculated data increased to 0.88, demonstrating the potential of our technique for GPP estimation and quantification of seasonal variation in estuarine ecosystems. The approach developed in this study has great potential for correcting unavoidable errors when estimating carbon budget of coastal wetlands. Furthermore, global warming is expected to accelerate sea level rise, which may enhance the effect of tidal activities and increase the difficulty in estimating coastal carbon budgets using conventional methods.  相似文献   

14.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

15.
仪器的加热效应校正对生态系统碳水通量估算的影响   总被引:1,自引:0,他引:1  
涡度相关技术的广泛应用为获取生态系统碳、水通量提供了可能,但在开路式涡度相关系统中,仪器的加热效应增大了观测数据的不确定性。为了衡量仪器的加热效应,以ChinaFLUX3个典型生态系统(长白山温带针阔混交林(CBS)、海北灌丛草甸(HBGC)、鼎湖山亚热带常绿阔叶林(DHS))为研究对象,就仪器的加热效应校正对碳、水通量估算的影响进行分析。结果表明:加热校正没有改变生态系统的能量闭合特征,也没有对水汽通量的估算产生影响,但显著减小了CBS和HBGC非生长季的净生态系统生产力(NEP),进而减少了NEP的年总量,对DHS没有显著影响。NEP减小幅度受到温度的强烈影响,CBS为7.7%~10.4%,远小于HBGC的76.6%~85.2%,HBGC的NEP大幅降低主要是由夜间NEP的改变导致生态系统呼吸(RE)的增大而引起。因而,在温带生态系统中,充分考虑加热校正对于准确估算生态系统的碳收支具有重要作用。  相似文献   

16.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

17.
Carbon dioxide exchange was measured, using the eddy covariance technique, during a one and a half year period in 1994 and 1995. The measurements took place over a former true raised bog, characterized by a shallow peat layer and a vegetation dominated by Molinia caerulea. The growing season extended from May until late October, with a maximum LAI in August of 1.7. The carbon balance shows a net release of 97 g C m–2 y–1 (265 kg C ha–1 y–1) from the peat bog ecosystem to the atmosphere. During June, July and August there is net consumption of CO2, while during the rest of the year there is net production of CO2. The average daytime assimilation rates ranged between – 0.2 and – 0.5 mg CO2 m–2 s–1 (– 45 and –11.3 μmol CO2 m–2 s–1), in a period where the LAI ranged between 1 and 1.7. A high vapour pressure deficit (> 15 hPa) corresponding with high temperatures was found to reduce the assimilation rate by on average 50%. Apart from these factors, LAI and the soil temperature codetermine the net exchange of CO2. The total nocturnal respiration during the growing season lies within the same order as the average daytime net assimilation rate. Temperature was found to be the main factor controlling soil respiration, with a Q10 of 4.8.  相似文献   

18.
To evaluate the carbon budget of a boreal deciduous forest, we measured CO2 fluxes using the eddy covariance technique above an old aspen (OA) forest in Prince Albert National Park, Saskatchewan, Canada, in 1994 and 1996 as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). We found that the OA forest is a strong carbon sink sequestering 200 ± 30 and 130 ± 30 g C m–2 y–1 in 1994 and 1996, respectively. These measurements were 16–45% lower than an inventory result that the mean carbon increment was about 240 g C m–2 y–1 between 1919 and 1994, mainly due to the advanced age of the stand at the time of eddy covariance measurements. Assuming these rates to be representative of Canadian boreal deciduous forests (area ≈ 3 × 105 km2), it is likely they can sequester 40–60 Tg C y–1, which is 2–3% of the missing global carbon sink. The difference in carbon sequestration by the OA forest between 1994 and 1996 was mainly caused by the difference in leaf emergence date. The monthly mean air temperature during March–May 1994, was 4.8 °C higher than in 1996, resulting in leaf emergence being 18–24 days earlier in 1994 than 1996. The warm spring and early leaf emergence in 1994 enabled the aspen forest to exploit the long days and high solar irradiance of mid-to-late spring. In contrast, the 1996 OA growing season included only 32 days before the summer solstice. The earlier leaf emergence in 1994 resulted 16% more absorbed photosynthetically active radiation and a 90 g C m–2 y–1 increase in photosynthesis than 1996. The concomitant increase in respiration in the warmer year (1994) was only 20 g C m–2 y–1. These results show that an important control on carbon sequestration by boreal deciduous forests is spring temperature, via the influence of air temperature on the timing of leaf emergence.  相似文献   

19.
随着城市化进程的推进,城市公园绿地的面积也在不断地增加。在碳循环与气候变化研究中,以人工植被为主要存在形态的城市绿地生态系统,其潜在的碳汇功能亦不容忽视。基于涡度相关技术,于2011年12月1日至2012年11月30日对北京奥林匹克森林公园城市绿地生态系统进行了碳通量观测,以探讨城市绿地生态系统碳交换及其与环境因子的关系及其源/汇属性和强度。研究发现:奥林匹克森林公园绿地年总生态系统生产力(Gross ecosystem production, GEP)、生态系统呼吸(Ecosystem respiration, Re)、生态系统净生产力(Net ecosystem production, NEP)具有明显的季节变化,生长季(4月—11月)以吸收二氧化碳(CO2)为主,非生长季以释放CO2为主。Re随空气温度(Air temperature, Ta)呈指数增加,温度敏感性系数(Q10)为2.5;GEP也随Ta的升高而增加;GEP与Re对Ta的响应差异决定着NEP与Ta的关系:当Ta < 10.0 ℃时,NEP随Ta升高而下降;当Ta > 10.0 ℃时, NEP随Ta升高而增加。在生长季各月,日总GEP随日光合有效辐射(Photosynthetically active radiation, PAR)的升高而增加,生态系统光合作用表观光量子效率(α)和平均最大光合速率(Amax)也表现出明显的季节变化,最大值出现在7月,分别为0.083 μmol CO2/μmol PAR 和29.46 μmol/m2?s,最小值出现在11月,分别为0.017 μmol CO2/μmol PAR和4.16 μmol/m2?s。奥林匹克森林公园绿地全年GEP 、Re、NEP的年总量分别为1192、1028、164 g C/m2。该研究结果可用于估算、模拟预测相似城市生态系统在气候变化背景下生态系统净碳交换,可作为城市绿地生态系统管理与应对气候变化的重要理论基础。  相似文献   

20.
精确估算典型森林生态系统冠层下方CO2通量(Fcb)对验证陆地生态系统碳平衡模型具有重要意义。采用开路涡度相关法对鼎湖山针阔叶混交林Fcb进行定位测定,根据1周年数据分析Fcb及其对环境要素的响应特征,结果表明:(1)白天Fcb呈下降趋势表明地表植被全年具有光合能力,但总体上地表植被和土壤表现为CO2排放源;(2)Van’tHoff方程、Arrhenius方程和Lloyd-Taylor方程均可以较好反映土壤温度(Ts)与Fcb的关系,其中仅Lloyd-Talor方程能够反映温度因子敏感性指标Q10随温度的变异性特征;(3)Lloyd-Talor方程模拟的Fcb完全由Ts控制,而连乘模型由Ts和土壤水分(Ms)控制,可以反映水热条件的综合影响,对Fcb具有更强的拟合能力;(4)在Ms较大时连乘模型对Fcb的估算高于Lloyd-Talor方程,反之在干旱时段连乘模型模拟结果低于Lloyd-Talor方程,表明当存在水分胁迫时,Ms可以成为影响Fcb的主导因子;(5)2003年鼎湖山针阔叶混交林Fcb总量((787.4±296.8)gCm^-2a^-1)比静态箱-气相色谱法测得的土壤呼吸偏低17%。与箱式法相比,涡度相关法通量测定结果普遍存在偏低估算现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号