首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Bacillus subtilis possesses a secondary transporter, CitM, that is specific for the complex of citrate and Mg(2+) but is also capable of transporting citrate in complex with the heavy metal ions Zn(2+), Ni(2+) and Co(2+). We report on the impact of CitM activity on the toxicity of Zn(2+), Ni(2+) and Co(2+) in B. subtilis. In a citM deletion mutant or under conditions in which CitM is not expressed, the toxic effects of the metals were reduced by the presence of citrate in the medium. In contrast, the presence of citrate dramatically enhanced toxicity when the Mg(2+)-citrate transporter was present in the membrane. It is demonstrated that the complex of Ni(2+) and citrate is transported into the cell and that the uptake is responsible for the enhanced toxicity. At toxic concentrations of the metal ions, the cultures adapted by developing tolerance against these ions. Tolerant cells isolated by exposure to one of the metal ions remained tolerant after growth in the absence of toxic metal ions and were cross-tolerant against the other two toxic ions. Tolerant strains were shown to contain point mutations in the citM gene, which resulted in premature termination of translation.  相似文献   

3.
4.
5.
6.
Citrate uptake in Bacillus subtilis is mediated by a secondary transporter that transports the complex of citrate and divalent metal ions. The gene coding for the transporter termed CitM was cloned, sequenced, and functionally expressed in Escherichia coli. Translation of the base sequence to the primary sequence revealed a transporter that is not homologous to any known secondary transporter. However, CitM shares 60% sequence identity with the gene product of open reading frame N15CR that is on the genome of B. subtilis and for which no function is known. The hydropathy profiles of the primary sequences of CitM and the unknown gene product are very similar, and secondary structure prediction algorithms predict 12 transmembrane-spanning segments for both proteins. Open reading frame N15CR was cloned and expressed in E. coli and was shown to be a citrate transporter as well. The transporter is termed CitH. A remarkable difference between the two transporters is that citrate uptake by CitM is stimulated by the presence of Mg2+ ions, while citrate uptake by CitH is inhibited by Mg2+. It is concluded that the substrate of CitM is the Mg(2+)-citrate complex and that CitH transports the free citrate anion. Uptake experiments in right-side-out membrane vesicles derived from E. coli cells expressing either CitM or CitH showed that both transporters catalyze electrogenic proton/substrate symport.  相似文献   

7.
8.
Xia C  Watton S  Nagl S  Samuel J  Lovegrove J  Cheshire J  Woo P 《FEBS letters》2004,570(1-3):217-222
The citM gene from Lactococcus lactis CRL264 was demonstrated to encode for an oxaloacetate decarboxylase. The enzyme exhibits high levels of similarity to malic enzymes (MEs) from other organisms. CitM was expressed in Escherichia coli, purified and its oxaloacetate decarboxylase activity was demonstrated by biochemical and genetic studies. The highest oxaloacetate decarboxylation activity was found at low pH in the presence of manganese, and the Km value for oxaloacetate was 0.52 ± 0.03 mM. However, no malic activity was found for this enzyme. Our studies clearly show a new group of oxaloacetate decarboxylases associated with the citrate fermentation pathway in gram-positive bacteria. Furthermore, the essential catalytic residues were found to be conserved in all members of the ME family, suggesting a common mechanism for oxaloacetate decarboxylation.  相似文献   

9.
The CitM transporter from Bacillus subtilis transports citrate as a complex with Mg2+. In this study, CitM was functionally expressed and characterized in E. coli DH5a cells. In the presence of saturating Mg2+ concentrations, the Km for citrate in CitM was 274 mM, similar to previous studies using whole cells of B. subtilis. CitM has a high substrate specificity for citrate. Other di- and tricarboxylic acids including succinate, isocitrate, cis-aconitate and tricarballylic acid did not significantly inhibit the uptake of citrate in the presence of Mg2+. However, CitM accepts complexes of citrate with metal ions other than Mg2+. The highest rate of citrate transport was seen in the presence of Mg2+, followed in order of preference by Mn2+, Ba2+, Ni2+, Co2+ and Ca2+. Citrate transport by CitM appears to be proton coupled. The transport was inhibited in transport buffers more alkaline than pH 7.5 and not affected by pH at acidic values. Transport was also inhibited by ionophores that affect the transmembrane proton gradient, including FCCP, TCC and nigericin. Valinomycin did not affect the uptake by CitM, suggesting that transport is electroneutral. In conclusion, the cloned CitM transporter from B. subtilis expressed in E. coli has properties similar to the transporter in intact B. subtilis cells. The results support a transport model with a coupling stoichiometry of one proton coupled to the uptake of one complex of (Mg2+-citrate)1-.  相似文献   

10.
11.
Under anoxic conditions in the presence of an oxidizable cosubstrate such as glucose or glycerol, Escherichia coli converts citrate to acetate and succinate. Two enzymes are specifically required for the fermentation of the tricarboxylic acid, i.e., a citrate uptake system and citrate lyase. Here we report that the open reading frame (designated citT) located at 13.90 min on the E. coli chromosome between rna and the citrate lyase genes encodes a citrate carrier. E. coli transformed with a plasmid expressing citT was capable of aerobic growth on citrate, which provides convincing evidence for a function of CitT as a citrate carrier. Transport studies with cell suspensions of the transformed strain indicated that CitT catalyzes a homologous exchange of citrate or a heterologous exchange against succinate, fumarate, or tartrate. Since succinate is the end product of citrate fermentation in E. coli, it is likely that CitT functions in vivo as a citrate/succinate antiporter. Analysis of the primary sequence showed that CitT (487 amino acids, 53.1 kDa) is a highly hydrophobic protein with 12 putative transmembrane helices. Sequence comparisons revealed that CitT is related to the 2-oxoglutarate/malate translocator (SODiT1 gene product) from spinach chloroplasts and five bacterial gene products, none of which has yet been functionally characterized. It is suggested that the E. coli CitT protein is a member of a novel family of eubacterial transporters involved in the transport of di- and tricarboxylic acids.  相似文献   

12.
C Shao  W Shang  Z Yang  Z Sun  Y Li  J Guo  X Wang  D Zou  S Wang  H Lei  Q Cui  Z Yin  X Li  X Wei  W Liu  X He  Z Jiang  S Du  X Liao  L Huang  Y Wang  J Yuan 《Journal of proteome research》2012,11(9):4465-4475
Bacteria utilize a quorum sensing (QS) system to coordinate gene expression by monitoring the concentration of molecules known as autoinducers (AI). In the present study, we confirmed the presence of a LuxS/AI-2 dependent QS system in vancomycin-resistant Enterococcus faecalis V583. Then, the cellular targets controlled by AI-2 were identified by comparative proteomics analysis in order to elucidate the possible role of AI-2 in E. faecalis. Results demonstrated 15 proteins that are differentially expressed upon the addition of AI-2, including proteins involved in metabolism, translation, energy production and/or conversion, and cell wall biogenesis. Glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase associated with carbohydrate metabolism and energy production were up-regulated upon inducing by AI-2. In addition, externally added AI-2 could down-regulate acetyl-coenzyme A carboxylase and ornithine carbamoyltransferase, two key enzyme involved in metabolism. All these data suggest that AI-2 signaling may play a role in the regulation of a number of important metabolic properties of E. faecali. We further investigated the role of AI-2 in biofilm formation by E. faecalis, showing the addition of AI-2 to E. faecalis V583 cultures resulted in increased biofilm formation. Our results provide important clues to the role of a LuxS/AI-2 dependent QS system in vancomycin-resistant E. faecalis.  相似文献   

13.
Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge.  相似文献   

14.
微生物降酸是现代葡萄酒酿造工艺中重要环节之一。利用现代生物技术将粟酒裂殖酵母中的苹果酸酶基因和苹果酸通透酶基因共同转化到酿酒酵母中,构建苹果酸-酒精酵母,使之既能进行酒精发酵,又能分解苹果酸。主要对近些年粟酒裂殖酵母苹果酸酶性质、基因结构及其转化酿酒酵母的研究做了回顾与总结,并指出了有待于解决的问题。  相似文献   

15.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

16.
Enzyme IIIMtl is part of the mannitol phosphotransferase system of Enterococcus faecalis. It is phosphorylated in a reaction sequence requiring enzyme I and heat-stable phosphocarrier protein (HPr). The phospho group is transferred from enzyme IIIMtl to enzyme IIMtl, which then catalyzes the uptake and concomitant phosphorylation of mannitol. The internalized mannitol-1-phosphate is oxidized to fructose-6-phosphate by mannitol-1-phosphate dehydrogenase. In this report we describe the cloning of the mtlF and mtlD genes, encoding enzyme IIIMtl and mannitol-1-phosphate dehydrogenase of E. faecalis, by a complementation system designed for cloning of gram-positive phosphotransferase system genes. The complete nucleotide sequences of mtlF, mtlD, and flanking regions were determined. From the gene sequences, the primary translation products are deduced to consist of 145 amino acids (enzyme IIIMtl) and 374 amino acids (mannitol-1-phosphate dehydrogenase). Amino acid sequence comparison confirmed a 41% similarity of E. faecalis enzyme IIIMtl to the hydrophilic enzyme IIIMtl-like portion of enzyme IIMtl of Escherichia coli and 45% similarity to enzyme IIIMtl of Staphylococcus carnosus. The putative N-terminal NAD+ binding domain of mannitol-1-phosphate dehydrogenase of E. faecalis shows a high degree of similarity with the N terminus of E. coli mannitol-1-phosphate dehydrogenase (T. Davis, M. Yamada, M. Elgort, and M. H. Saier, Jr., Mol. Microbiol. 2:405-412, 1988) and the N-terminal part of the translation product of S. carnosus mtlD, which was also determined in this study. There is 40% similarity between the dehydrogenases of E. faecalis and E. coli over the whole length of the enzymes. The organization of mannitol-specific genes in E. faecalis seems to be similar to the organization in S. carnosus. The open reading frame for enzyme IIIMtl E. faecalis is followed by a stem-loop structure, analogous to a typical Rho-independent terminator. We conclude that the mannitol-specific genes are organized in an operon and that the gene order is mtlA orfX mtlF mtlD.  相似文献   

17.
Oxalate-degrading Enterococcus faecalis   总被引:2,自引:0,他引:2  
An oxalate-degrading Enterococcus faecalis was isolated from human stools under anaerobic conditions. The bacteria required a poor nutritional environment and repeated subculturing to maintain their oxalate-degrading ability. The E. faecalis produced 3 proteins (65, 48, and 40 kDa) that were not produced by non-oxalate-degrading E. faecalis as examined by SDS-PAGE. Antibodies against oxalyl-coenzyme A decarboxylase (65 kDa) and formyl-coenzyme A transferase (48 kDa) obtained from Oxalobacter formigenes (an oxalate-degrading anaerobic bacterium in the human intestine) reacted with 2 of the proteins (65 and 48 kDa) from the E. faecalis as examined by Western blottings. This is the first report on the isolation of oxalate-degrading facultative anaerobic bacteria from humans.  相似文献   

18.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.  相似文献   

19.
Genes encoding a branched-chain alpha-keto acid dehydrogenase from Enterococcus faecalis 10C1, E1alpha (bkdA), E1beta (bkdB), E2 (bkdC), and E3 (bkdD), were found to reside in the gene cluster ptb-buk-bkdDABC. The predicted products of ptb and buk exhibited significant homology to the phosphotransbutyrylase and butyrate kinase, respectively, from Clostridium acetobutylicum. Activity and redox properties of the purified recombinant enzyme encoded by bkdD indicate that E. faecalis has a lipoamide dehydrogenase that is distinct from the lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex. Specific activity of the ptb gene product expressed in Escherichia coli was highest with the substrates valeryl-coenzyme A (CoA), isovaleryl-CoA, and isobutyryl-CoA. In cultures, a stoichiometric conversion of alpha-ketoisocaproate to isovalerate was observed, with a concomitant increase in biomass. We propose that alpha-ketoisocaproate is converted via the BKDH complex to isovaleryl-CoA and subsequently converted into isovalerate via the combined actions of the ptb and buk gene products with the concomitant phosphorylation of ADP. In contrast, an E. faecalis bkd mutant constructed by disruption of the bkdA gene did not benefit from having alpha-ketoisocaproate in the growth medium, and conversion to isovalerate was less than 2% of the wild-type conversion. It is concluded that the bkd gene cluster encodes the enzymes that constitute a catabolic pathway for branched-chain alpha-keto acids that was previously unidentified in E. faecalis.  相似文献   

20.
Gel filtration chromatography showed that nardilysin activity in a rat testis or rat brain extract exhibited an apparent molecular weight of approximately 300 kDa compared to approximately 187 kDa for the purified enzyme. The addition of purified nardilysin to a rat brain extract, but not to an E. coli extract, produced the higher molecular species. The addition of a GST fusion protein containing the acidic domain of nardilysin eliminated the higher molecular weight nardilysin forms, suggesting that oligomerization involves the acidic domain of nardilysin. Using an immobilized nardilysin column, mitochondrial malate dehydrogenase (mMDH) and citrate synthase (CS) were isolated from a fractionated rat brain extract. Porcine mMDH, but not porcine cytosolic MDH, was shown to form a heterodimer with nardilysin. Mitochondrial MDH increased nardilysin activity about 50%, while nardilysin stabilized mMDH towards heat inactivation. CS was co-immunoprecipitated with mMDH only in the presence of nardilysin showing that nardilysin facilitates complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号