首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
A novel type of macroscopic microbial community consisting of large dendritic filaments (up to 1.5 m) in a pH 2.0 dam of the River Tinto (South-western Spain) is described. The combined use of 16S rRNA-gene surveys and fluorescent in situ hybridisation (FISH) suggested that gamma-proteobacteria and a relative large diversity of alpha-proteobacteria dominated these structures. beta-Proteobacteria, Actinobacteria and Firmicutes were also detected. Whereas acidophilic bacteria of the genera Acidithiobacillus, Leptospirillum and Acidiphilium, and archaea belonging to the Thermoplasmatales dominate mine acid drainage waters and streamers (riverbed filamentous biofilms), none of the lineages identified in this study affiliate to typical acid mine drainage acidophilic bacteria. Bacteria of the Tinto macrofilaments might be heterotrophic, and could be feeding on the organic matter entrapped in the filamentous structure.  相似文献   

3.
Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage.  相似文献   

4.
紫金山铜矿酸性矿山废水微生物群落多样性   总被引:1,自引:0,他引:1  
【背景】为避免环境污染,酸性矿山废水需经处理后才能排放,处理后的废水理化性质会发生显著变化,将影响整个微生物群落的结构。【目的】分析处理前后的细菌和真菌群落变化及其与理化参数的关系,为矿山废水的处理提供参考指标,并为矿山污染场地的修复提供理论基础。【方法】采集福建紫金山铜矿的酸性矿山废水并测定其理化性质。采用基于原核微生物16S rRNA基因V4区和真菌18S rRNA基因ITS的高通量测序技术分析水样的微生物群落结构。【结果】经中和处理后的回水与矿坑水和生物浸出液相比,pH升高,重金属离子含量显著降低。原核微生物的多样性高于真菌,回水的物种多样性高于矿坑水和浸出液。回水中变形菌门的丰度最高,矿坑水和浸出液中分别以广古菌门和硝化螺菌门的丰度最高。回水中噬氢菌属为优势类群,矿坑水和浸出液中的优势菌是钩端螺旋菌属,铁质菌属等古菌也有一定的比例。pH、Al、Mn、Zn与回水中相对丰度较高的菌属显著相关,而矿坑水和浸出液中的高丰度类群与环境因子没有显著的相关性。【结论】研究表明酸性废水的中和沉淀处理对微生物群落产生了较大的影响,微生物群落变化可以作为矿山酸性废水污染处理效果的一个参考指标。  相似文献   

5.
Iron-oxidizing bacteria belonging to the genus Leptospirillum are of great importance in continuous-flow commercial biooxidation reactors, used for extracting metals from minerals, that operate at 40 degrees C or less. They also form part of the microbial community responsible for the generation of acid mine drainage. More than 16 isolates of leptospirilla were included in this study, and they were clearly divisible into two major groups. Group I leptospirilla had G+C moles percent ratios within the range 49 to 52% and had three copies of rrn genes, and based on 16S rRNA sequence data, these isolates clustered together with the Leptospirillum ferrooxidans type strain (DSM2705 or L15). Group II leptospirilla had G+C moles percent ratios of 55 to 58% and had two copies of rrn genes, and based on 16S rRNA sequence data, they form a separate cluster. Genome DNA-DNA hybridization experiments indicated that three similarity subgroups were present among the leptospirilla tested, with two DNA-DNA hybridization similarity subgroups found within group I. The two groups could also be distinguished based on the sizes of their 16S-23S rRNA gene spacer regions. We propose that the group II leptospirilla should be recognized as a separate species with the name Leptospirillum ferriphilum sp. nov. Members of the two species can be rapidly distinguished from each other by amplification of their 16S rRNA genes and by carrying out restriction enzyme digests of the products. Several, but not all, isolates of the group II leptospirilla, but none from group I (L. ferrooxidans), were capable of growth at 45 degrees C. All the leptospirilla isolated from commercial biooxidation tanks in South Africa were from group II.  相似文献   

6.
Deeply sampled community genomic (metagenomic) datasets enable comprehensive analysis of heterogeneity in natural microbial populations. In this study, we used sequence data obtained from the dominant member of a low-diversity natural chemoautotrophic microbial community to determine how coexisting closely related individuals differ from each other in terms of gene sequence and gene content, and to uncover evidence of evolutionary processes that occur over short timescales. DNA sequence obtained from an acid mine drainage biofilm was reconstructed, taking into account the effects of strain variation, to generate a nearly complete genome tiling path for a Leptospirillum group II species closely related to L. ferriphilum (sampling depth approximately 20x). The population is dominated by one sequence type, yet we detected evidence for relatively abundant variants (>99.5% sequence identity to the dominant type) at multiple loci, and a few rare variants. Blocks of other Leptospirillum group II types ( approximately 94% sequence identity) have recombined into one or more variants. Variant blocks of both types are more numerous near the origin of replication. Heterogeneity in genetic potential within the population arises from localized variation in gene content, typically focused in integrated plasmid/phage-like regions. Some laterally transferred gene blocks encode physiologically important genes, including quorum-sensing genes of the LuxIR system. Overall, results suggest inter- and intrapopulation genetic exchange involving distinct parental genome types and implicate gain and loss of phage and plasmid genes in recent evolution of this Leptospirillum group II population. Population genetic analyses of single nucleotide polymorphisms indicate variation between closely related strains is not maintained by positive selection, suggesting that these regions do not represent adaptive differences between strains. Thus, the most likely explanation for the observed patterns of polymorphism is divergence of ancestral strains due to geographic isolation, followed by mixing and subsequent recombination.  相似文献   

7.
Iron-oxidizing bacteria belonging to the genus Leptospirillum are of great importance in continuous-flow commercial biooxidation reactors, used for extracting metals from minerals, that operate at 40°C or less. They also form part of the microbial community responsible for the generation of acid mine drainage. More than 16 isolates of leptospirilla were included in this study, and they were clearly divisible into two major groups. Group I leptospirilla had G+C moles percent ratios within the range 49 to 52% and had three copies of rrn genes, and based on 16S rRNA sequence data, these isolates clustered together with the Leptospirillum ferrooxidans type strain (DSM2705 or L15). Group II leptospirilla had G+C moles percent ratios of 55 to 58% and had two copies of rrn genes, and based on 16S rRNA sequence data, they form a separate cluster. Genome DNA-DNA hybridization experiments indicated that three similarity subgroups were present among the leptospirilla tested, with two DNA-DNA hybridization similarity subgroups found within group I. The two groups could also be distinguished based on the sizes of their 16S-23S rRNA gene spacer regions. We propose that the group II leptospirilla should be recognized as a separate species with the name Leptospirillum ferriphilum sp. nov. Members of the two species can be rapidly distinguished from each other by amplification of their 16S rRNA genes and by carrying out restriction enzyme digests of the products. Several, but not all, isolates of the group II leptospirilla, but none from group I (L. ferrooxidans), were capable of growth at 45°C. All the leptospirilla isolated from commercial biooxidation tanks in South Africa were from group II.  相似文献   

8.
Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.  相似文献   

9.
Yin H  Cao L  Qiu G  Wang D  Kellogg L  Zhou J  Liu X  Dai Z  Ding J  Liu X 《Archives of microbiology》2008,189(2):101-110
The molecular diversities of the microbial communities from four sites impacted by acid mine drainage (AMD) at Dexing Copper Mine in Jiangxi province of China were studied using 16S rRNA sequences and gyrB sequences. Of the four sampled sites, each habitat exhibited distinct geochemical characteristics and the sites were linked geographically allowing us to correlate microbial community structure to geochemical characteristics. In the present study, we examined the molecular diversity of 16S rRNA and gyrB genes from water at these sites using a PCR-based cloning approach. We found that the microbial community appears to be composed primarily of Proteobacteria, Acidobacteria, Actinobacteria, Nitrospira, Firmicutes, Chlorella and unknown phylotypes. Of clones affiliated with Nitrospira, Leptospirillum ferrooxidans, Leptospirillum ferriphilum and Leptospirillum group III were all detected. Principal-component analysis (PCA) revealed that the distribution of the microbial communities was influenced greatly by geochemical characteristics. The overall PCA profiles showed that the sites with similar geochemical characteristics had more similar microbial community structures. Moreover, our results also indicated that gyrB sequence analysis may be very useful for differentiating very closely related species in the study of microbial communities. H. Yin and L. Cao contributed equally to this work.  相似文献   

10.
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.  相似文献   

11.
硫铁矿酸性矿山废水对大型底栖动物群落结构的影响   总被引:7,自引:1,他引:6  
2006年11月和2007年1月通过金属和生物指标的量化监测,就酸性矿山废水对大型底栖动物群落结构的影响及高岚河污染现状进行研究。典型对应分析表明:酸性废水对高岚河上游大型底栖动物群落结构影响最大。对高岚河大型底栖动物群落结构和功能摄食类群进行分析,研究硫铁矿酸性矿山废水对河流大型底栖动物群落的影响,结果表明:高岚河自矿源起约16km河段,大型底栖动物群落结构已经遭到严重破坏;多足摇蚊Polypedilum tritum和真凯氏摇蚊Eukiefferiellab rehmi对酸和金属均具有较强的耐受力;捕食者和刮食者对矿山酸性废水带来的污染反应最为敏感。逐步回归分析表明:大型底栖动物生物多样性受Al、Ca、Cd、Fe、Mg、Mn等金属影响最大;密度受Ca、Cr和Mg的影响最大。  相似文献   

12.
13.
This study presents population analyses of microbial communities inhabiting a site of extreme acid mine drainage (AMD) production. The site is the inactive underground Richmond mine at Iron Mountain, Calif., where the weathering of a massive sulfide ore body (mostly pyrite) produces solutions with pHs of approximately 0.5 to approximately 1.0. Here we used a suite of oligonucleotide probes, designed from molecular data recently acquired from the site, to analyze a number of microbial environments by fluorescent in situ hybridization. Microbial-community analyses were correlated with geochemical and mineralogical data from those environments. The environments investigated were within the ore body and thus at the site of pyrite dissolution, as opposed to environments that occur downstream of the dissolution. Few organism types, as defined by the specificities of the oligonucleotide probes, dominated the microbial communities. The majority of the dominant organisms detected were newly discovered or organisms only recently associated with acid-leaching environments. "Ferroplasma" spp. were detected in many of the communities and were particularly dominant in environments of lowest pH and highest ionic strength. Leptospirillum spp. were also detected in many slime and pyrite-dominated environments. In samples of an unusual subaerial slime, a new uncultured Leptospirillum sp. dominated. Sulfobacillus spp. were detected as a prominent inhabitant in warmer ( approximately 43 degrees C) environments. The information gathered here is critical for determining organisms important to AMD production at Iron Mountain and for directing future studies of this process. The findings presented here also have relevance to the microbiology of industrial bioleaching and to the understanding of geochemical iron and sulfur cycles.  相似文献   

14.
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.  相似文献   

15.
Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to genotype the dominant Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a 4-year period. We observed six distinct genotypes that are recombinants comprised of segments from two 'parental' genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were over-represented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly under-represented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.  相似文献   

16.
17.
Surface-induced and biofilm-induced changes in gene expression   总被引:8,自引:0,他引:8  
A biofilm is a community of microorganisms attached to a surface. Based on studies of single-species communities, biofilm formation follows a progression from initial attachment to a mature form composed of pillar-like multicellular structures interspersed with fluid-filled channels. The developmental progression leading to a mature biofilm requires changes in gene expression. With recent technological advances for visualizing biofilm growth, gene expression can be directly monitored during biofilm development. Hence, analyses of surface-induced and biofilm-induced changes in gene expression have begun in earnest. Recent studies have identified regulatory pathways that are important for biofilm formation and have focused on genetic responses to environmental stimuli in mature biofilms. These findings are providing new insights into biofilm development and physiology.  相似文献   

18.
19.
20.
Analysis of assembled random shotgun sequence data from a low-diversity, subsurface acid mine drainage (AMD) biofilm revealed a single nif operon. This was found on a genome fragment belonging to a member of Leptospirillum group III, a lineage in the Nitrospirae phylum with no cultivated representatives. Based on the prediction that this organism is solely responsible for nitrogen fixation in the community, we pursued a selective isolation strategy to obtain the organism in pure culture. An AMD biofilm sample naturally abundant in Leptospirillum group III cells was homogenized, filtered, and serially diluted into a nitrogen-free liquid medium. The resulting culture in the terminal dilution grew autotrophically to a maximum cell density of approximately 10(6) cells/ml, oxidizing ferrous iron as the sole energy source. 16S rRNA-internal transcribed spacer region clone library analysis confirmed that the isolate is a member of Leptospirillum group III and that the culture is axenic. We propose the name Leptospirillum ferrodiazotrophum sp. nov. for this iron-oxidizing, free-living diazotroph. This study highlights how environmental sequence data can provide insights for culturing previously uncultured microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号