首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Latent transforming growth factor beta (TGF-β) binding proteins (LTBPs) are large extracellular glycoproteins structurally similar to fibrillins. They perform intricate and important roles in the extracellular matrix (ECM) and perturbations of their function manifest as a wide range of diseases. LTBPs are major regulators of TGF-β bioavailability and action. In addition, LTBPs interact with other ECM proteins-from cytokines to large multi-factorial aggregates like microfibrils and elastic fibers, affecting their genesis, structure, and performance. In the present article, we review recent advancements in the field and relate the complex roles of LTBP in development and homeostasis.  相似文献   

2.
The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.  相似文献   

3.
X Yuan  A K Downing  V Knott    P A Handford 《The EMBO journal》1997,16(22):6659-6666
Here we describe the high resolution nuclear magnetic resonance (NMR) structure of a transforming growth factor beta (TGF-beta)-binding protein-like (TB) domain, which comes from human fibrillin-1, the protein defective in the Marfan syndrome (MFS). This domain is found in fibrillins and latent TGF-beta-binding proteins (LTBPs) which are localized to fibrillar structures in the extracellular matrix. The TB domain manifests a novel fold which is globular and comprises six antiparallel beta-strands and two alpha-helices. An unusual cysteine triplet conserved in the sequences of TB domains is localized to the hydrophobic core, at the C-terminus of an alpha-helix. The structure is stabilized by four disulfide bonds which pair in a 1-3, 2-6, 4-7, 5-8 pattern, two of which are solvent exposed. Analyses of MFS-causing mutations and the fibrillin-1 cell-binding RGD site provide the first clues to the surface specificity of TB domain interactions. Modelling of a homologous TB domain from LTBP-1 (residues 1018-1080) suggests that hydrophobic contacts may play a role in its interaction with the TGF-beta1 latency-associated peptide.  相似文献   

4.
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, − 2, − 3, and − 4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here.The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.  相似文献   

5.
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.  相似文献   

6.
Latent transforming growth factor beta-binding protein 1 (LTBP-1) targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Fibrillins are extracellular matrix macromolecules whose primary function is architectural: fibrillins assemble into ultrastructurally distinct microfibrils that are ubiquitous in the connective tissue space. LTBPs and fibrillins are highly homologous molecules, and colocalization in the matrix of cultured cells has been reported. To address whether LTBP-1 functions architecturally like fibrillins, microfibrils were extracted from tissues and analyzed immunochemically. In addition, binding studies were conducted to determine whether LTBP-1 interacts with fibrillins. LTBP-1 was not detected in extracted beaded-string microfibrils, suggesting that LTBP-1 is not an integral structural component of microfibrils. However, binding studies demonstrated interactions between LTBP-1 and fibrillins. The binding site was within three domains of the LTBP-1 C terminus, and in fibrillin-1 the site was defined within four domains near the N terminus. Immunolocalization data were consistent with the hypothesis that LTBP-1 is a fibrillin-associated protein present in certain tissues but not in others. In tissues where LTBP-1 is not expressed, LTBP-4 may substitute for LTBP-1, because the C-terminal end of LTBP-4 binds equally well to fibrillin. A model depicting the relationship between LTBP-1 and fibrillin microfibrils is proposed.  相似文献   

7.
Transforming growth factor (TGF)-betas are secreted in large latent complexes consisting of TGF-beta, its N-terminal latency-associated peptide (LAP) propeptide, and latent TGF-beta binding protein (LTBP). LTBPs are required for secretion and subsequent deposition of TGF-beta into the extracellular matrix. TGF-beta1 associates with the 3(rd) 8-Cys repeat of LTBP-1 by LAP. All LTBPs, as well as fibrillins, contain multiple 8-Cys repeats. We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-beta by their 8-Cys repeats. 8-Cys repeat was found to interact with TGF-beta1*LAP by direct cysteine bridging. LTBP-1 and LTBP-3 bound efficiently all TGF-beta isoforms, LTBP-4 had a much weaker binding capacity, whereas LTBP-2 as well as fibrillins -1 and -2 were negative. A short, specific TGF-beta binding motif was identified in the TGF-beta binding 8-Cys repeats. Deletion of this motif in the 3(rd) 8-Cys repeat of LTBP-1 resulted in loss of TGF-beta*LAP binding ability, while its inclusion in non-TGF-beta binding 3(rd) 8-Cys repeat of LTBP-2 resulted in TGF-beta binding. Molecular modeling of the 8-Cys repeats revealed a hydrophobic interaction surface and lack of three stabilizing hydrogen bonds introduced by the TGF-beta binding motif necessary for the formation of the TGF-beta*LAP - 8-Cys repeat complex inside the cells.  相似文献   

8.
Calcium binding (cb) epidermal growth factor-like (EGF) domains are found in a wide variety of extracellular proteins with diverse functions. In several proteins, including the fibrillins (1 and 2), the low-density lipoprotein receptor, the Notch receptor and related molecules, these domains are organised as multiple tandem repeats. The functional importance of calcium-binding by EGF domains has been underscored by the identification of missense mutations associated with defective calcium-binding, which have been linked to human diseases. Here, we present (15)N backbone relaxation data for a pair of cbEGF domains from fibrillin-1, the defective protein in the Marfan syndrome. The data were best fit using a symmetric top model, confirming the extended conformation of the cbEGF domain pair. Our data demonstrate that calcium plays a key role in stabilising the rigidity of the domain pair on the pico- to millisecond time-scale. Strikingly, the most dynamically stable region of the construct is centred about the domain interface. These results provide important insight into the properties of intact fibrillin-1, the consequences of Marfan syndrome causing mutations, and the ultrastructure of fibrillins and other extracellular matrix proteins.  相似文献   

9.
The growth factor TGF-β is secreted in a latent complex consisting of three proteins: TGF-β, an inhibitor (latency-associated protein, LAP, which is derived from the TGF-β propeptide) and an ECM-binding protein (one of the latent TGF-β binding proteins, or LTBPs). LTBPs interact with fibrillins and other ECM components and thus function to localize latent TGF-β in the ECM. LAP contains an integrin-binding site (RGD), and several RGD-binding integrins are able to activate latent TGF-β through binding this site. Mutant mice defective in integrin-mediated activators, and humans and mice with fibrillin gene mutations, show the critical role of ECM and integrins in regulating TGF-β signaling.  相似文献   

10.
Growth factors, potent regulators of cell differentiation, tissue morphogenesis, tissue homeostasis, and cellular response to injury, reside in the extracellular matrix. Genetic evidence in humans and mice as well as biochemical data implicate fibrillins and LTBPs in the extracellular control of TGFbeta and BMP signaling. Fibrillins and LTBPs form tissue-specific and temporally regulated microfibril networks. In the developing embryo, three fibrillins and four LTBPs contribute molecular heterogeneity to microfibril networks, and provide different templates upon which TGFbeta-related growth factors can be positioned. By accommodating this molecular heterogeneity, microfibril architecture can orchestrate a variety of different signals in very specific tissue locations. Human fibrillinopathies display a broad phenotypic spectrum from tall to short stature, from hypermobile joints to joint contractures and stiffness, and from severe to mild or no cardiovascular manifestations. A spectrum of growth factor dysregulation may be caused by differential effects of mutations in fibrillins on microfibril architecture, thus altering appropriate targeting or positioning of growth factors within microfibril networks. Growth factor dysregulation may help to explain the broad phenotypic spectrum of the fibrillinopathies.  相似文献   

11.
Latent TGFβ binding protein 1 (LTBP1) is a large extracellular protein that has been shown to bind covalently to the propeptide of TGFβ cytokines and form a large latent complex, which is then incapable of binding TGFβ receptors. LTBP1 has also been demonstrated to interact with a number of insoluble extracellular matrix components, such as fibrillin, which may play a role in TGFβ regulation. Here we present the backbone 1H, 13C and 15N assignments for two EGF domains of human LTBP1, and flanking regions, together forming a 12 kDa protein fragment at the C-terminus of LTBP1. This region is of particular interest as it is postulated to be involved in interactions with fibrillin microfibrils.  相似文献   

12.
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFβ and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFβ and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFβ and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.  相似文献   

13.
The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.  相似文献   

14.
Biochemical and biophysical methods are used to show that BMP-7 is secreted as a stable complex consisting of the processed growth factor dimer noncovalently associated with its two prodomain propeptide chains and that the BMP-7 complex is structurally similar to the small transforming growth factor beta (TGFbeta) complex. Because the prodomain of TGFbeta interacts with latent TGFbeta-binding proteins, a family of molecules homologous to the fibrillins, the prodomain of BMP-7 was tested for binding to fibrillin-1 or to LTBP-1. The BMP-7 prodomain and BMP-7 complex, but not the separated growth factor dimer, interact with N-terminal regions of fibrillin-1. This interaction may target the BMP-7 complex to fibrillin microfibrils in the extracellular matrix. Immunolocalization of BMP-7 in tissues like the kidney capsule and skin reveals co-localization with fibrillin. However, BMP-7 immunolocalization in other tissues known to be active sites for BMP-7 signaling is not apparent, suggesting that immunolocalization of BMP-7 in certain tissues represents specific extracellular storage sites. These studies suggest that the prodomains of TGFbeta-like growth factors are important for positioning and concentrating growth factors in the extracellular matrix. In addition, they raise the possibility that prodomains of other TGFbeta-like growth factors interact with fibrillins and/or LTBPs and are also targeted to the extracellular matrix.  相似文献   

15.
WFIKKN1 and WFIKKN2 are large extracellular multidomain proteins consisting of a WAP domain, a follistatin domain, an immunoglobulin domain, two Kunitz-type protease inhibitor domains and an NTR domain. Recent experiments have shown that both proteins have high affinity for growth and differentiation factor (GDF)8 and GDF11. Here we study the interaction of WFIKKN proteins with several additional representatives of the transforming growth factor (TGF)β family using SPR measurements. Analyses of SPR sensorgrams suggested that, in addition to GDF8 and GDF11, both WFIKKN proteins bind TGFβ1, bone morphogenetic protein (BMP)2 and BMP4 with relatively high affinity (K(d) ~ 10(-6) m). To assess the biological significance of these interactions we studied the effect of WFIKKN proteins on the activity of GDF8, GDF11, TGFβ1, BMP2 and BMP4 using reporter assays. These studies revealed that WFIKKN1 and WFIKKN2 inhibited the biological activity of GDF8 and GDF11 in the nanomolar range, whereas they did not inhibit the activities of TGFβ1, BMP2 and BMP4 even in the micromolar range. Our data indicate that WFIKKN proteins are antagonists of GDF8 and GDF11, but in the case of TGFβ1, BMP2 and BMP4 they function as growth factor binding proteins. It is suggested that the physical association of WFIKKN proteins with these growth factors may localize their action and thus help to establish growth factor gradients in the extracellular space.  相似文献   

16.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

17.
Fibrillin microfibrils are extracellular matrix structures with essential functions in the development and the organization of tissues including blood vessels, bone, limbs and the eye. Fibrillin‐1 and fibrillin‐2 form the core of fibrillin microfibrils, to which multiple proteins associate to form a highly organized structure. Defining the components of this structure and their interactions is crucial to understand the pathobiology of microfibrillopathies associated with mutations in fibrillins and in microfibril‐associated molecules. In this study, we have analyzed both in vitro and in vivo the role of fibrillin microfibrils in the matrix deposition of latent TGF‐β binding protein 1 (LTBP‐1), ‐3 and ‐4; the three LTBPs that form a complex with TGF‐β. In Fbn1?/? ascending aortas and lungs, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. In addition, in cultures of Fbn1?/? smooth muscle cells or lung fibroblasts, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. Fibrillin‐2 is not involved in the deposition of LTBP‐1 in Fbn1?/? extracellular matrix as cells deficient for both fibrillin‐1 and fibrillin‐2 still incorporate LTBP‐1 in their matrix. However, blocking the formation of the fibronectin network in Fbn1?/? cells abrogates the deposition of LTBP‐1. Together, these data indicate that LTBP‐3 and LTBP‐4 association with the matrix depends on fibrillin‐1 microfibrils, whereas LTBP‐1 association depends on a fibronectin network. J. Cell. Physiol. 227: 3828–3836, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF beta. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF beta-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis.  相似文献   

19.
Heparin-binding growth-associated molecule (HB-GAM) is an extracellular matrix-associated protein implicated in the development and plasticity of neuronal connections of brain. Binding to cell surface heparan sulfate is indispensable for the biological activity of HB-GAM. In the present paper we have studied the structure of recombinant HB-GAM using heteronuclear NMR. These studies show that HB-GAM contains two beta-sheet domains connected by a flexible linker. Both of these domains contain three antiparallel beta-strands. In addition to this domain structure, HB-GAM contains the N- and C-terminal lysine-rich sequences that lack a detectable structure and appear to form random coils. Studies using CD and NMR spectroscopy suggest that HB-GAM undergoes a conformational change upon binding to heparin, and that the binding occurs primarily to the beta-sheet domains of the protein. Search of sequence data bases shows that the beta-sheet domains of HB-GAM are homologous to the thrombospondin type I repeat (TSR). Sequence comparisions show that the beta-sheet structures found previously in midkine, a protein homologous with HB-GAM, also correspond to the TSR motif. We suggest that the TSR sequence motif found in various extracellular proteins defines a beta-sheet structure similar to that found in HB-GAM and midkine. In addition to the apparent structural similarity, a similarity in biological functions is suggested by the occurrence of the TSR sequence motif in a wide variety of proteins that mediate cell-to-extracellular matrix and cell-to-cell interactions, in which the TSR domain mediates specific cell surface binding.  相似文献   

20.
The calcium-binding epidermal growth factor-like (cbEGF) domain is a common structural motif in extracellular and transmembrane proteins. K(d) values for Ca2+ vary from the millimolar to nanomolar range; however the molecular basis for this variation is poorly understood. We have measured K(d) values for six fibrillin-1 cbEGF domains, each preceded by a transforming growth factor beta-binding protein-like (TB) domain. Using NMR and titration with chromophoric chelators, we found that K(d) values varied by five orders of magnitude. Interdomain hydrophobic contacts between TB-cbEGF domains were studied by site-directed mutagenesis and could be correlated directly with Ca2+ affinity. Furthermore, in TB-cbEGF pairs that displayed high-affinity binding, NMR studies showed that TB-cbEGF interface formation was strongly Ca2+-dependent. We suggest that Ca2+ affinity is a measure of interface formation in both homologous and heterologous cbEGF domain pairs, thus providing a measure of flexibility in proteins with multiple cbEGF domains. These data highlight the versatile role of the cbEGF domain in fine tuning the regional flexibility of proteins and provide new constraints for the organization of fibrillin-1 within 10-12-nm microfibrils of the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号