首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the rapid development of structural determination of target proteins for human diseases, high throughout virtual screening based drug discovery is gaining popularity gradually. In this paper, a fast docking algorithm (H-DOCK) based on hydrogen bond matching and surface shape complementarity was developed. In H-DOCK, firstly a divide-and-conquer strategy based enumeration approach is applied to rank the intermolecular modes between protein and ligand by maximizing their hydrogen bonds matching, then each docked conformation of the ligand is calculated according to the matched hydrogen bonding geometry, finally a simple but effective scoring function reflecting mainly the van der Waals interaction is used to evaluate the docked conformations of the ligand. H-DOCK is tested for rigid ligand docking and flexible one, the latter is implemented by repeating rigid docking for multiple conformations of a small molecule and ranking all together. For rigid ligands, H-DOCK was tested on a set of 271 complexes where there is at least one intermolecular hydrogen bond, and H-DOCK achieved success rate (RMSD<2.0?Å) of 91.1%. For flexible ligands, H-DOCK was tested on another set of 93 complexes, where each case was a conformation ensemble containing native ligand conformation as well as 100 decoy ones generated by AutoDock [1], and the success rate reached 81.7%. The high success rate of H-DOCK indicates that the hydrogen bonding and steric hindrance can grasp the key interaction between protein and ligand. H-DOCK is quite efficient compared with the conventional docking algorithms, and it takes only about 0.14 seconds for a rigid ligand docking and about 8.25 seconds for a flexible one on average. According to the preliminary docking results, it implies that H-DOCK can be potentially used for large scale virtual screening as a pre-filter for a more accurate but less efficient docking algorithm.  相似文献   

2.
Here we carry out an examination of shape complementarity as a criterion in protein-protein docking and binding. Specifically, we examine the quality of shape complementarity as a critical determinant not only in the docking of 26 protein-protein "bound" complexed cases, but in particular, of 19 "unbound" protein-protein cases, where the structures have been determined separately. In all cases, entire molecular surfaces are utilized in the docking, with no consideration of the location of the active site, or of particular residues/atoms in either the receptor or the ligand that participate in the binding. To evaluate the goodness of the strictly geometry-based shape complementarity in the docking process as compared to the main favorable and unfavorable energy components, we study systematically a potential correlation between each of these components and the root mean square deviation (RMSD) of the "unbound" protein-protein cases. Specifically, we examine the non-polar buried surface area, polar buried surface area, buried surface area relating to groups bearing unsatisfied buried charges, and the number of hydrogen bonds in all docked protein-protein interfaces. For these cases, where the two proteins have been crystallized separately, and where entire molecular surfaces are considered without a predefinition of the binding site, no correlation is observed. None of these parameters appears to consistently improve on shape complementarity in the docking of unbound molecules. These findings argue that simplicity in the docking process, utilizing geometrical shape criteria may capture many of the essential features in protein-protein docking. In particular, they further reinforce the long held notion of the importance of molecular surface shape complementarity in the binding, and hence in docking. This is particularly interesting in light of the fact that the structures of the docked pairs have been determined separately, allowing side chains on the surface of the proteins to move relatively freely. This study has been enabled by our efficient, computer vision-based docking algorithms. The fast CPU matching times, on the order of minutes on a PC, allow such large-scale docking experiments of large molecules, which may not be feasible by other techniques. Proteins 1999;36:307-317.  相似文献   

3.
4.
Antibody-antigen interactions are representative of a broad class of receptor-ligand interactions involving both specificity and potential inducible complementarity. To test possible mechanisms of antigenantibody recognition and specificity computationally, we have used a Metropolis Monte Carlo algorithm to dock fragments of the epitope Glu-Val-Val-Pro-His-Lys-Lys to the X-ray structures of both the free and the complexed Fab of the antibody B13I2 (raised against the C-helix of myohemerythri). The fragments Pro-His and Val-Pro-His, which contain residues experimentally identified as important for binding, docked correctly to both structures, but all tetrapeptide and larger fragments docked correctly only to the complexed Fab, even when torsional flexibility was added to the ligand. However, only tetrapeptide and larger fragments showed significantly more favorable energies when docked to the complexed Fab coordinates than when docked to either the free Fab or a non-specific site remote from the combining site. Comparison of the free and complexed B13I2 structures revealed that atoms within 5 Å of Val-Pro-His showed little movement upon peptide binding, but atoms within 5 Å of the other four epitope residues showed greater movements. These results computationally distinguish recognition and binding processes with practical implications for drug design strategies. Overall, this new fragment docking approach establishes distinct roles for the “lock-and-key” (recognition) and the “handshake” (binding) paradigms in antibody-antigen interaction, suggests an incremental approach to incorporating flexibility in computational docking, and identifies critical regions within receptor binding sites for ligand recognition. © 1994 Wiley-Liss, Inc.  相似文献   

5.
In this paper, we study the problem of computing the similarity of two protein structures by measuring their contact-map overlap. Contact-map overlap abstracts the problem of computing the similarity of two polygonal chains as a graph-theoretic problem. In R3, we present the first polynomial time algorithm with any guarantee on the approximation ratio for the 3-dimensional problem. More precisely, we give an algorithm for the contact-map overlap problem with an approximation ratio of sigma where sigma = min{sigma(P1), sigma(P2)} 0, is hard.  相似文献   

6.
Geometric complementarity is the most dominant term in protein-protein docking and therefore, a good geometric representation of the molecules, which takes into account the flexibility of surface residues, is desirable. We present a modified geometric representation of the molecular surface that down-weighs the contribution of specified parts of the surface to the complementarity score. We apply it to the mobile ends of the most flexible side chains: lysines, glutamines and arginines (trimming). The new representation systematically reduces the complementarity scores of the false-positive solutions, often more than the scores of the correct solutions, thereby improving significantly our ability to identify nearly correct solutions in rigid-body docking of unbound structures. The effect of trimming lysine residues is larger than trimming of glutamine or arginine residues. It appears to be independent of the conformations of the trimmed residues but depends on the relative abundance of such residues at the interface and on the non-interacting surface. Combining the modified geometric representation with electrostatic complementarity further improves the docking results.  相似文献   

7.
Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein–ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.  相似文献   

8.
Prediction of interaction energies between ligands and their receptors remains a major challenge for structure-based inhibitor discovery. Much effort has been devoted to developing scoring schemes that can successfully rank the affinities of a diverse set of possible ligands to a binding site for which the structure is known. To test these scoring functions, well-characterized experimental systems can be very useful. Here, mutation-created binding sites in T4 lysozyme were used to investigate how the quality of atomic charges and solvation energies affects molecular docking. Atomic charges and solvation energies were calculated for 172,118 molecules in the Available Chemicals Directory using a semi-empirical quantum mechanical approach by the program AMSOL. The database was first screened against the apolar cavity site created by the mutation Leu99Ala (L99A). Compared to the electronegativity-based charges that are widely used, the new charges and desolvation energies improved ranking of known apolar ligands, and better distinguished them from more polar isosteres that are not observed to bind. To investigate whether the new charges had predictive value, the non-polar residue Met102, which forms part of the binding site, was changed to the polar residue glutamine. The structure of the resulting Leu99Ala and Met102Gln double mutant of T4 lysozyme (L99A/M102Q) was determined and the docking calculation was repeated for the new site. Seven representative polar molecules that preferentially docked to the polar versus the apolar binding site were tested experimentally. All seven bind to the polar cavity (L99A/M102Q) but do not detectably bind to the apolar cavity (L99A). Five ligand-bound structures of L99A/M102Q were determined by X-ray crystallography. Docking predictions corresponded to the crystallographic results to within 0.4A RMSD. Improved treatment of partial atomic charges and desolvation energies in database docking appears feasible and leads to better distinction of true ligands. Simple model binding sites, such as L99A and its more polar variants, may find broad use in the development and testing of docking algorithms.  相似文献   

9.
MOTIVATION: Efficient fitting tools are needed to take advantage of a fast growth of atomic models of protein domains from crystallography or comparative modeling, and low-resolution density maps of larger molecular assemblies. Here, we report a novel fitting algorithm for the exhaustive and fast overlay of partial high-resolution models into a low-resolution density map. The method incorporates a fast rotational search based on spherical harmonics (SH) combined with a simple translational scanning. RESULTS: This novel combination makes it possible to accurately dock atomic structures into low-resolution electron-density maps in times ranging from seconds to a few minutes. The high-efficiency achieved with simulated and experimental test cases preserves the exhaustiveness needed in these heterogeneous-resolution merging tools. The results demonstrate its efficiency, robustness and high-throughput coverage. AVAILABILITY: http://sbg.cib.csic.es/Software/ADP_EM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

10.
A completely automated method is described for determining the most likely mode of binding of two (macro)molecules from the knowledge of their three-dimensional structures alone. The method is based on well-known graph theoretical techniques and has been used successfully to determine and rationalize the binding of a number of known macromolecular complexes. In this article we present results for a special case of the general molecular recognition problem--given the information concerning the particular atoms involved in the binding for one of the molecules, the algorithm can correctly identify the corresponding (contacting) atoms of the other molecule. The approach used can be easily extended to the general molecular recognition problem and requires the extraction of maximal common subgraphs. In these studies the docking of the macromolecules was achieved without the aid of computer graphics or other visual aids. The algorithm has been used to determine the correct mode of binding of a protein antigen to an antibody in approximately 100 min on a DEC micro VAX 3600.  相似文献   

11.
In this study, with flavonol glycosides (FG) and terpene lactones (TL) in ginkgo biloba extract (GBE) as the targets for separation, we investigated the effectiveness of molecular docking in adsorbent screening. Several polyamine-modified methyl acylate-co-divinylbenzene (MA-co-DVB) adsorbent models were built, and their affinity to rutin, quercetin and ginkgolide B (GB) was evaluated via molecular docking. The model of ethylenediamine-modified adsorbent showed the largest difference in affinity between to GB and to quercetin as well as rutin, and thus this adsorbent could have the best separation performance. The results of the subsequently conducted static adsorption and dynamic adsorption experiments correlated well with docking results. Finally, using ethylenediamine-modified MA-co-DVB adsorbent, nearly complete separation of the FG and TL in GBE was simply achieved by one step of adsorption-desorption. Thus, the reported molecular docking method is expected to be helpful for rapid adsorbent screening.  相似文献   

12.
Constructing an active site on an inert scaffold is still a challenge in chemical biology. Herein, we describe the incorporation of a Newton-direction-based fast loop-closure algorithm for catalytic residue matching into our enzyme design program ProdaMatch. This was developed to determine the sites and geometries of the catalytic residues as well as the position of the transition state with high accuracy in order to satisfy the geometric constraints on the interactions between catalytic residues and the transition state. Loop-closure results for 64,827 initial loops derived from 21 loops in the test set showed that 99.51 % of the initial loops closed to within 0.05 Å in fewer than 400 iteration steps, while the large majority of the initial loops closed within 100 iteration steps. The revised version of ProdaMatch containing the novel loop-closure algorithm identified all native matches for ten scaffolds in the native active-site recapitulation test. Its high speed and accuracy when matching catalytic residues with a scaffold make this version of ProdaMatch potentially useful for scaffold selection through the incorporation of more complex theoretical enzyme models which may yield higher initial activities in de novo enzyme design.  相似文献   

13.
In the classical procedures for predicting the structure of protein complexes two molecules are brought in contact at multiple relative positions, the extent of complementarity (geometric and/or energy) at the surface of contact is assessed at each position, and the best fits are retrieved. In view of the higher occurrence of hydrophobic groups at contact sites, their contribution results in more intermolecular atom–atom contacts per unit area for correct matches than for false positive fits. The hydrophobic groups are also potentially less flexible at the surface. Thus, from a practical point of view, a partial representation of the molecules based on hydrophobic groups should improve the quality of the results in finding molecular recognition sites, as compared to full representation. We tested this proposal by applying the idea to an existing geometric fit procedure and compared the results obtained with full vs. hydrophobic representations of molecules in known molecular complexes. The hydrophobic docking yielded distinctly higher signal-to-noise ratio so that the correct match is discriminated better from false positive fits. It appears that nonhydrophobic groups contribute more to false matches. The results are discussed in terms of their relevance to molecular recognition techniques as compared to energy calculations. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Depth is a term frequently applied to the shape and surface of macromolecules, describing for example the grooves in DNA, the shape of an enzyme active site, or the binding site for a small molecule in a protein. Yet depth is a difficult property to define rigorously in a macromolecule, and few computational tools exist to quantify this notion, to visualize it, or analyze the results. We present our notion of travel depth, simply put the physical distance a solvent molecule would have to travel from a surface point to a suitably defined reference surface. To define the reference surface, we use the limiting form of the molecular surface with increasing probe size: the convex hull. We then present a fast, robust approximation algorithm to compute travel depth to every surface point. The travel depth is useful because it works for pockets of any size and complexity. It also works for two interesting special cases. First, it works on the grooves in DNA, which are unbounded in one direction. Second, it works on the case of tunnels, that is pockets that have no "bottom", but go through the entire macromolecule. Our algorithm makes it straightforward to quantify discussions of depth when analyzing structures. High-throughput analysis of macromolecule depth is also enabled by our algorithm. This is demonstrated by analyzing a database of protein-small molecule binding pockets, and the distribution of bound magnesium ions in RNA structures. These analyses show significant, but subtle effects of depth on ligand binding localization and strength.  相似文献   

15.
The main objectives of this study were to assess a dual molecular beacon approach for fast detection of Mycobacterium tuberculosis (MT). MT beacon (Tb-B) was designed to target the unique IS6110 (114 bp) and rpoB (215 bp) fragment of the MT (H37Ra) genome, and the two fragments were inserted into the PMD-19T vector after purification, by PCR and sequencing, to construct plasmids. Different dilutions of positive plasmid standards were used for dual molecular beacon RT-PCR of rpoB and IS6110, and standard curves were established.The results show that the dual molecular beacon of rpoB and IS6110 detecting MT was stable (CV is 1.91–2.68 %) with a high amplification efficiency (95.6 %). In addition, the strains of non MT did not generate fluorescence signals, while strains of MT did, indicating that the primers and molecular beacons were specific, and only MT complex was amplified. The linear range was wide (103–1011 copies/mL), and clinical specimens presenting different bacterial counts can be detected.  相似文献   

16.
In 3D single particle reconstruction, which involves the translational and rotational matching of a large number of electron microscopy (EM) images, the algorithmic performance is largely dependent on the efficiency and accuracy of the underlying 2D image alignment kernel. We present a novel fast rotational matching kernel for 2D images (FRM2D) that significantly reduces the cost of this alignment. The alignment problem is formulated using one translational and two rotational degrees of freedom. This allows us to take advantage of fast Fourier transforms (FFTs) in rotational space to accelerate the search of the two angular parameters, while the remaining translational parameter is explored, within a limited range, by exhaustive search. Since there are no boundary effects in FFTs of cyclic angular variables, we avoid the expensive zero padding associated with Fourier transforms in linear space. To verify the robustness of our method, efficiency and accuracy tests were carried out over a range of noise levels in realistic simulations of EM images. Performance tests against two standard alignment methods, resampling to polar coordinates and self-correlation, demonstrate that FRM2D compares very favorably to the traditional methods. FRM2D exhibits a comparable or higher robustness against noise and a significant gain in efficiency that depends on the fineness of the angular sampling and linear search range.  相似文献   

17.
Present study was aimed at finding a better alternative to paclitaxel, an anticancer chemotherapeutic drug. Two targets, tubulin beta-1 chain and apoptosis regulator Bcl-2 protein (202F) were used in the study. Of these, structure of tubulin beta-1 chain is not known and that of Bcl-2 was taken from protein data bank with ID 202F. Tertiary structure model of tubulin beta-1 chain was predicted and validated. The validated 3D structure of tubulin beta-1 chain and Bcl-2 protein was taken to study their interaction with paclitaxel. Molecular docking of paclitaxel and its analogues was performed with these targets separately. Results showed that out of 84 analogues taken from PubChem, CID_44322802 had glide score of -9.62, as compared to -5.86 of paclitaxel with tubulin beta-1 chain. It was also observed that CID_9919057 had glide score of -9.0, as compared to -8.24 of paclitaxel with Bcl-2 protein. However, further experimental and clinical verification is needed to establish these analogues as drug.  相似文献   

18.
A model binding site was used to investigate charge-charge interactions in molecular docking. This simple site, a small (180A(3)) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre"ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20microM and 60microM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the "naked" site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions. Whereas most of these did not bind, two did (phenol and 3-fluorocatechol). Crystal structures for these two ligands in complex with the cavity site suggest reasons for their binding. That these neutral molecules do, in fact bind, contradicts previous results in this site and, along with the alkyl amines, provides instructive false negatives that help identify weaknesses in our scoring functions. Several improvements of these are considered.  相似文献   

19.
A possible molecular mechanism governing human erythrocyte shape.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.

Background  

Many molecules are flexible and undergo significant shape deformation as part of their function, and yet most existing molecular shape comparison (MSC) methods treat them as rigid bodies, which may lead to incorrect shape recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号