首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geng S  Zhou S  Glowacki J 《Aging cell》2011,10(6):962-971
With aging, there is a decline in bone mass and in osteoblast differentiation of human mesenchymal stem cells (hMSCs) in vitro. Osteoblastogenesis can be stimulated with 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3] and, in some hMSCs, by the precursor 25‐hydroxyvitamin D3 (25OHD3). CYP27B1/1α‐hydroxylase activates 25OHD3 and, to a variable degree, hMSCs express CYP27B1. In this study, we tested the hypotheses (i) that age affects responsiveness to 25OHD3 and expression/activity of CYP27B1 in hMSCs and (ii) that parathyroid hormone (PTH) upregulates CYP27B1 in hMSCs, as it does in renal cells. There were age‐related declines in osteoblastogenesis (n = 8, P = 0.0286) and in CYP27B1 gene expression (n = 27, r = ?0.498; P = 0.008) in hMSCs. Unlike hMSCs from young subjects (≤50 years), hMSCs from older subjects (≥55 years) were resistant to 25OHD3 stimulation of osteoblastogenesis. PTH1‐34 (100 nm ) provided hMSCs with responsiveness to 25OHD3 (P = 0.0313, Wilcoxon matched pairs test) and with two episodes of increased 1,25(OH)2D3 synthesis, of cAMP response element binding protein (CREB) activation, and of CYP27B1 upregulation. Both increases in CYP27B1 expression by PTH were obliterated by CREB‐siRNA or KG‐501 (which specifically inhibits the downstream binding of activated CREB). Only the second period of CREB signaling was diminished by AG1024, an inhibitor of insulin‐like growth factor‐I receptor kinase. Thus, PTH stimulated hMSCs from elders with responsiveness to 25OHD3 by upregulating expression/activity of CYP27B1 and did so through CREB and IGF‐I pathways.  相似文献   

2.
The parathyroid hormone type 1 receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHRP). Interacting with this receptor, PTHRP contributes to skeletal development through the regulation of chondrocyte proliferation and differentiation. Recently, a tetranucleotide repeat—(AAAG) n —in the P3 promoter of the PTHR1 gene has been shown to have functional activity in vitro, and homozygosity for (AAAG)6, or the 6/6 genotype, has been associated with greater adult height compared to the 5/5 genotype. In this study, we evaluated the association of (AAAG) n with height and bone mineral density (BMD) measured at lumbar spine (LS) and femoral neck (FN) in a cohort of 677 young caucasian women 18–35 years of age. Genomic DNA was amplified and genotyped by comparison with sequenced controls following electrophoretic separation through high-resolution polyacrylamide gels. Allele frequencies for (AAAG) n were: 76.8% (n=5); 20.9% (n=6); 1.8% (n=7); 0.18% (n=8); 0.27% (n=9); 0.08% (n=2), and there was no evidence for Hardy–Weinberg disequilibrium. Analysis of variance showed that subjects bearing one or two (AAAG)6 alleles (6/X & 6/6) were significantly taller (165.7±0.5 cm) than the others (X/X, 164.5±0.3 cm; P=0.034). This association was significant after adjusting for multiple covariates—current age, age at menarche, physical activity, smoking status, and intakes of caffeine and calcium. Comparison of genotype groups for BMD was not significant at LS, but BMD was significantly higher at FN in the group with at least one (AAAG)6 allele (adjusted means: 1.021±0.008 vs. 0.999±0.006 g/cm2, P=0.032). In conclusion, our data show that subjects bearing one or two (AAAG)6 alleles are taller than subjects without, reinforcing the notion that in vivo variation in promoter activity of the PTHR1 gene may be a relevant genetic influence on final adult height and BMD.  相似文献   

3.
In rat enterocytes, signaling through the parathyroid hormone (PTH)/PTH-related peptide receptor type 1(PTHR1) includes stimulation of adenylyl cyclase, increases of intracellular calcium, activation of phospholipase C, and the MAP kinase pathway, mechanisms that suffer alterations with ageing. The purpose of this study was to evaluate whether an alteration at the level of the PTH receptor (PTHR1) is the basis for impaired PTH signaling in aged rat enterocytes. Western Blot analysis with a specific monoclonal anti-PTHR1 antibody revealed that a 85 kDa PTH binding component, the size expected for the mature PTH/PTHrP receptor, localizes in the basolateral (BLM) and brush border (BBM) membranes of the enterocyte, being the protein expression about 7-fold higher in the BLM. Two other bands of 105 kDa (corresponding to highly glycosylated, incompletely processed receptor form) and 65 kDa (proteolytic fragment) were also seen. BLM PTHR1 protein expression significantly decreases with ageing, while no substantial decrease was observed in the BBM from old rats. PTHR1 immunoreactivity was also present in the nucleus where PTHR1 protein levels were similar in enterocytes from young and aged rats. Immunohistochemical analysis of rat duodenal sections showed localization of PTHR1 in epithelial cells all along the villus with intense staining of BBM, BLM, and cytoplasm. The nuclei of these cells were reactive to the PTHR1 antiserum, but not all cells showed the same nuclear staining. The receptor was also detected in the mucosae lamina propria cells, but was absent in globets cells from epithelia. In aged rats, PTHR1 immunoreactivity was diffused in both membranes and cytoplasm and again, PTH receptor expression was lower than in young animals, while the cell nuclei showed a similar staining pattern than in young rats. Ligand binding to PTHR1 was performed in purified BLM. rPTH(1-34) displaced [I(125)]PTH(1-34) binding to PTHR1 in a concentration-dependent fashion. In both, aged (24 months) and young (3 months) rats, binding of [I(125)]PTH was characterized by a single class of high-affinity binding sites. The affinity of the receptor for PTH was not affected by age. The maximum number of specific PTHR1 binding sites was decreased by 30% in old animals. The results of this study suggest that age-related declines in PTH regulation of signal transduction pathways in rat enterocytes may be due, in part, to the loss of hormone receptors.  相似文献   

4.
Objective:To examine bone mass and metabolism in women who had previously undergone Roux‐en‐Y gastric bypass (RYGB) and determine the effect of supplementation with calcium (Ca) and vitamin D. Research Methods and Procedures: Bone mineral density and bone mineral content (BMC) were examined in 44 RYGB women (≥3 years post‐surgery; 31% weight loss; BMI, 34 kg/m2) and compared with age‐ and weight‐matched control (CNT) women (n = 65). In a separate analysis, RYGB women who presented with low bone mass (n = 13) were supplemented to a total 1.2 g Ca/d and 8 μg vitamin D/d over 6 months and compared with an unsupplemented CNT group (n = 13). Bone mass and turnover and serum parathyroid hormone (PTH) and 25‐hydroxyvitamin D were measured. Results:Bone mass did not differ between premenopausal RYGB and CNT women (42 ± 5 years), whereas postmenopausal RYGB women (55 ± 7 years) had higher bone mineral density and BMC at the lumbar spine and lower BMC at the femoral neck. Before and after dietary supplementation, bone mass was similar, and serum PTH and markers of bone resorption were higher (p < 0.001) in RYGB compared with CNT women and did not change significantly after supplementation. Discussion: Postmenopausal RYGB women show evidence of secondary hyperparathyroidism, elevated bone resorption, and patterns of bone loss (reduced femoral neck and higher lumbar spine) similar to other subjects with hyperparathyroidism. Although a modest increase in Ca or vitamin D does not suppress PTH or bone resorption, it is possible that greater dietary supplementation may be beneficial.  相似文献   

5.
6.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

7.
Osteocalcin (OCN), a marker of osteoblast activity, has been implicated in the regulation of energy metabolism by the skeleton and thus may affect body fat measures.

Objective:

To examine the relationships of OCN to body fat measures and whether they vary according to markers of energy and vitamin D metabolism.

Design and Methods:

Data were obtained from 58 obese adolescents aged 13‐17.9 years (38 females, 8 black or African‐American). Total fat mass (FM) [dual X‐ray absorptiometry (DXA)] and visceral adipose tissue (VAT) [computerized axial tomography (CT)] were calculated. Blood tests included leptin, OCN, 25‐hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), thyroid function tests, and triglycerides. Markers of glucose metabolism were obtained from fasting and OGTT samples.

Results and Conclusions:

Adolescents with 25(OH)D <20 ng mL?1 were considered deficient (n = 17/58); none had high PTH (PTH ≥ 65 pg mL?1). OCN was associated with lower VAT (?84.27 ± 33.89 mm2) and BMI (?0.10 ± 0.05 kg m?2), not FM (P = 0.597) in a core model including age, sex, race, geographic latitude, summer, height z‐score, and tanner stage. Adding 25(OH)D deficiency and PTH attenuated the inverse association of OCN to VAT. There was a significant interaction of OCN and 25(OH)D deficiency on FM (0.37 ± 0.18 kg, P = 0.041) and BMI (0.28 ± 0.10 kg m?2, P = 0.007) in this adjusted model, which was further explained by leptin. Adding A1C to the core model modified the relationship of OCN to VAT (?93.08 ± 35.05 mm2, P = 0.011), which was further explained by HOMA‐IR. In summary, these findings provide initial evidence for a relationship between OCN and body fat measures that is dependent on energy metabolism and vitamin D status among obese adolescents.
  相似文献   

8.
The purpose of this study was to compare muscle oxidative capacity between moderately active young and old humans by measuring intracellular threshold (IT) during exercise with 31P-magnetic resonance spectroscopy (31P-MRS). Changes in phosphocreatine, inorganic phosphate, and intracellular pH were measured by 31P-MRS during a progressive unilateral ankle plantar flexion exercise protocol in groups of moderately active old (n=12, mean age 66.7 years) and young (n=13, mean age 26.2 years) individuals. From muscle biopsy samples of the lateral gastrocnemius, citrate synthase (CS) activity was determined in six subjects from each group, and fibre type composition was determined in nine old and ten young subjects. The old group had a lower IT for pH, as a percentage of peak work rate (P<0.05), despite a similar CS activity compared to the young. IT was significantly correlated with CS activity (R=0.59; P<0.05), but not with fibre type composition. It was concluded that metabolic responses to exercise are affected by ageing, as indicated by a lower IT in old compared to young individuals. Accepted: 7 May 1998  相似文献   

9.
Human mesenchymal stromal cells (hMSCs) cells are attractive for applications in tissue engineering and cell therapy. Because of the low availability of hMSCs in tissues and the high doses of hMSCs necessary for infusion, scalable and cost‐effective technologies for in vitro cell expansion are needed to produce MSCs while maintaining their functional, immunophenotypic and cytogenetic characteristics. Microcarrier‐based culture systems are a good alternative to traditional systems for hMSC expansion. The aim of the present study was to develop a scalable bioprocess for the expansion of human bone marrow mesenchymal stromal cells (hBM‐MSCs) on microcarriers to optimize growth and functional harvesting. In general, the results obtained demonstrated the feasibility of expanding hBM‐MSCs using microcarrier technology. The maximum cell concentration (n = 5) was ~4.82 ± 1.18 × 105 cell mL?1 at day 7, representing a 3.9‐fold increase relative to the amount of inoculated cells. At the end of culture, 87.2% of the cells could be harvested (viability = 95%). Cell metabolism analysis revealed that there was no depletion of important nutrients such as glucose and glutamine during culture, and neither lactate nor ammonia byproducts were formed at inhibitory concentrations. The cells that were recovered after the expansion retained their immunophenotypic and functional characteristics. These results represent an important step toward the implementation of a GMP‐compliant large‐scale production system for hMSCs for cellular therapy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:889–895, 2014  相似文献   

10.
Parathyroid hormone (PTH) regulation of mitogen‐activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106‐01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase‐1 (MKP‐1) resulted in 30–40% inhibition of pERK1/2; however MKP‐1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c‐Raf phosphorylation at serine 338 (ser338) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively‐active c‐Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor‐c‐Raf were seen when cells were treated with PTH(1‐34) or PTH(1‐31) analogues that stimulate cAMP, but not with PTH(3‐34), PTH(7‐34) or PTH(18‐48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c‐Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c‐Raf activity and that stimulation of MKP‐1 may contribute to maintaining pERK1/2 inhibition over prolonged time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non‐osteogenic medium with or without purmorphamine (2 µM) for periods of up to 14 days. Purmorphamine up‐regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204–208, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
13.
PTH and PTHrP use the same G protein-coupled receptor, the PTH/PTHrP receptor (PTHR), to mediate their distinct biological actions. The extent to which the mechanisms by which the two ligands bind to the PTHR differ is unclear. We examined this question using several pharmacological and biophysical approaches. Kinetic dissociation and equilibrium binding assays revealed that the binding of [(125)I]PTHrP(1-36) to the PTHR was more sensitive to GTPgammaS (added to functionally uncouple PTHR-G protein complexes) than was the binding of [(125)I]PTH(1-34) ( approximately 75% maximal inhibition vs. approximately 20%). Fluorescence resonance energy transfer-based kinetic analyses revealed that PTHrP(1-36) bound to the PTHR more slowly and dissociated from it more rapidly than did PTH(1-34). The cAMP signaling response capacity of PTHrP(1-36) in cells decayed more rapidly than did that of PTH(1-34) (t(1/2) = approximately 1 vs. approximately 2 h). Divergent residue 5 in the ligand, Ile in PTH and His in PTHrP, was identified as a key determinant of the altered receptor-interaction responses exhibited by the two peptides. We conclude that whereas PTH and PTHrP bind similarly to the G protein-coupled PTHR conformation (RG), PTH has a greater capacity to bind to the G protein-uncoupled conformation (R(0)) and, hence, can produce cumulatively greater signaling responses (via R(0)-->RG isomerization) than can PTHrP. Such conformational selectivity may relate to the distinct modes by which PTH and PTHrP act biologically, endocrine vs. paracrine, and may help explain reported differences in the effects that the ligands have on calcium and bone metabolism when administered to humans.  相似文献   

14.
Parathyroid hormone (PTH) directly interacts with bone remodeling osteoblasts and osteocytes expressing the G-protein coupled receptor PTH receptor 1 (PTH1R), and its osteoanabolic effects mostly involve the cAMP/PKA signaling cascade. Considering that PTH-dependent calcium entry in rat enterocytes is reproduced by the adenylate cyclase agonist forskolin or by cAMP analogues, possible involvement of calcium as a second messenger in PTH-dependent cAMP signaling was investigated in MG-63 cells. First, Ca2+ influx was confirmed in Fluo3-loaded MG-63 cells treated with a cell-permeable cAMP analog. Second, PTH (1–34) and forskolin promoted calcium influxes that were completely abrogated by the PKA inhibitor H-89. Ca2+ entry was not reproduced when PTH (1–34) was combined with the PKC-activating competitor PTH (3–34). Vanilloid transient potential (TRPV) channel inhibitor Ruthenium Red, but not a voltage-dependent calcium channel (VDCC) inhibitor nifedipine, efficiently stunted Ca2+ entry, and comparable abrogation was reproduced in cells treated with TRPV4-selective inhibitor RN-1734 or transfected with TRPV4-specific siRNA. Interestingly, PTH-driven Ca2+ through TRPV4 significantly inhibited MG63 cell migration through a mechanism requiring extracellular Ca2+. In contrast, the inhibitory effects of forskolin on migration were refractory to TRPV4 silencing or to RN-1734. Altogether, our results indicate that single treatment with PTH (1–34) promotes extracellular calcium entry through TRPV4 channels in MG-63 cells through a cAMP/PKA-dependent mechanism, and that this influx affects cell migration.  相似文献   

15.
To characterize the Ca2+ transport process across the apical membrane of the rabbit connecting tubule (CNT), we examined the effects of luminal pressure on parathyroid hormone (PTH)-dependent apical Ca2+ transport in this segment perfused in vitro. An increase of perfusion pressure (0.2 to 1.2 KPa) caused cytoplasmic free Ca2+ concentration ([Ca2+].) to increase by 42 ± 11 nm in Fura-2 loaded perfused CNT. The response was accentuated when 10 nm PTH was added to the bath (101 ± 30 nm, n = 6). Addition of 0.1 mm chlorphenylthio-cAMP (CPT-cAMP) to the bath also augmented the [Ca2+]; response to pressure from 36 ± 16 to 84 ± 26 nm (n = 3). Under steady perfusion pressure at 1.2 KPa, PTH (10 nm) increased [Ca2+]; by 31 ± 7 nm (n = 5), whereas it did only slightly by 6 ± 2 nm (n = 12) at 0.2 KPa. The pressure-dependent increase of [Ca2+]; was abolished by removing luminal Ca2+ (n = 3), and was not affected by 0.1 and 10 m nicardipine (n = 4) in the presence of 10 nm PTH. Cell-attached patch clamp studies on the apical membrane of everted CNT with pipettes filled with either 200 mm CaCl2 or 140 mm NaCl revealed channel activities with conductances of 42 ± 2 pS (n = 4) or 173 ± 7 pS (n = 5), respectively. An application of negative pressure (–4.9 KPa) to the patch pipette augmented its mean number of open channels (NP 0 ) from 0.005 ± 0.001 to 0.022 ± 0.005 in the Ca2+-filled pipette, and was further accelerated to 0.085 ± 0.014 (n = 3) by 0.1 mm CPT-cAMP. In the Na+-filled pipette, similar results were obtained (n = 3), and CPT-cAMP did not activate the stretch-activated channel in the absence of negative pressure (n = 3). These results suggest that a stretch-activated nonselective cation channel exists in the apical membrane of the CNT and that it is activated by PTH in the presence of hydrostatic pressure, allowing entry of Ca2+ transport from the apical membrane.We appreciate Ms. Hisayo Hosaka and Ms. Yuki Oyama for their technical assistance and Ms. Keiko Sakai for her secretarial work. This research was supported by grants from the Ministry of Education and Culture of Japan (No. 05670054) and from Yamanouchi Foundation for Research on Metabolic Disorders (1992–1993).  相似文献   

16.
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   

17.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

18.
The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1‐34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of 15N‐enriched human parathyroid hormone, 15N PTH(1‐34), generated via a plasmid vector that gives reasonable yield, low‐cost protease cleavage (leaving the native N‐terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1–34)PTH/PTHrP segmental hybrid peptides, the N‐terminal 1–14 segment of PTHrP is incompatible with the C‐terminal 15–34 region of PTH leading to substantial reduction in potency. The sites of incompatibility were identified as positions 5 in PTH and 19 in PTHrP. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two point‐mutated PTH/PTHrP 1–34 hybrids in which the arginine residues at positions 19 and 21 of the native sequence of PTHrP have been replaced by valine (hybrid V21) and glutamic acid (hybrid E19), respectively, taken from the PTH sequence. Hybrid V21 exhibits both high receptor affinity and biological potency, while hybrid E19 binds weakly and is poorly active. The conformational properties of the two hybrids were studied in aqueous solution containing dodecylphosphocholine (DPC) micelles and in water/2,2,2‐trifluoroethanol (TFE) mixtures. Upon addition of TFE or DPC micelles to the aqueous solution, both hybrids undergo a coil‐helix transition. The maximum helix content in 1 : 1 water/TFE, obtained by CD data for both hybrids, is ∼ 80%. In the presence of DPC micelles, the maximum helix content is ∼ 40%. The conformational properties of the two hybrids in the micellar system were further investigated by combined 2D‐nmr, distance geometry (DG), and molecular dynamics (MD) calculations. The common structural motif, consisting of two helical segments located at N‐ and C‐termini, was observed in both hybrids. However, the biologically potent hybrid V21 exhibits two flexible sites, centered at residues 12 and 19 and connecting helical segments, while the flexibility sites in the weakly active hybrid E19 are located at position 11 and in the sequence 20–26. Our findings support the hypothesis that the presence and location of flexibility points between helical segments are essential for enabling the active analogs to fold into the bioactive conformation upon interaction with the receptor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 525–535, 1999  相似文献   

20.
Objective: To determine whether the N363S variant in the glucocorticoid receptor (encoded by nuclear receptor subfamily 3, group C, member 1: NR3C1) is associated with obesity, type 2 diabetes, or hypertension. Research Methods and Procedures: This was a cross‐sectional case‐control study involving 951 Anglo‐Celtic/Northern European subjects from Sydney. This study consisted of the following: 1) an obesity clinic group, most of whom had “morbid obesity” (mean BMI for group = 43 ± 8 kg/m2; n = 152); 2) a type 2 diabetes clinic group (n = 356); 3) patients with essential hypertension who had a strong family history (n = 141); and 4) normal healthy controls (n = 302). N363S genotype, BMI, and a range of other parameters relevant to each group were measured. Results: Compared with the frequency of 0.04 in nonobese healthy subjects, the S363 allele was significantly higher in obesity clinic patients (0.17; p = 5.6 × 10?8), subjects with diabetes who were also obese (0.09; p = 0.0045), subjects with hypertension who were also overweight (0.08; p = 0.0016), and overweight healthy subjects (0.12; p = 0.0004). Discussion: The NR3C1 N363S variant is associated with obesity and overweight in a range of patient settings but is not associated with hypertension or type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号