首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of P300 acetyltransferase activity by specific inhibitor C646 has been shown to improve insulin signaling. However, the underlying molecular mechanism of this improvement remains unclear. In this study, we analyzed P300 levels of obese patients and found that they were significantly increased in liver hepatocytes. In addition, large amounts of P300 appeared in the cytoplasm. Inhibition of P300 acetyltransferase activity by C646 drastically increased tyrosine phosphorylation of the insulin receptor protein substrates (IRS1/2) without affecting the tyrosine phosphorylation of the beta subunit of the insulin receptor (IRβ) in hepatocytes in the absence of insulin. Since IRS1/2 requires membrane translocation and binding to inositol compounds for normal functions, we also examined the role of acetylation on binding to phosphatidylinositol(4,5)P2 and found that IRS1/2 acetylation by P300 reduced this binding. In contrast, we show that inhibition of IRS1/2 acetylation by C646 facilitates IRS1/2 membrane translocation. Intriguingly, we demonstrate that C646 activates IRβ′s tyrosine kinase activity and directly promotes IRβ interaction with IRS1/2, leading to the tyrosine phosphorylation of IRS1/2 and subsequent activation of insulin signaling even in the absence of insulin. In conclusion, these data reveal the unique effects of C646 in activating insulin signaling in patients with obesity and diabetes.  相似文献   

2.
Obesity has become a serious health problem in the world, with increased morbidity, mortality, and financial burden on patients and health-care providers. The skeletal muscle is the most extensive tissue, severely affected by a sedentary lifestyle, which leads to obesity and type 2 diabetes. Obesity disrupts insulin signaling in the skeletal muscle, resulting in decreased glucose disposal, a condition known as insulin resistance. Although there is a large body of evidence on obesity-induced insulin resistance in various skeletal muscles, the molecular mechanism of insulin resistance due to a disruption in insulin receptor signaling, specifically in the gastrocnemius skeletal muscle of obese Zucker rats (OZRs), is not fully understood. This study subjected OZRs to a glucose tolerance test (GTT) to analyze insulin sensitivity. In addition, immunoprecipitation and immunoblotting techniques were used to determine the expression and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and insulin receptor-β (IRβ), and the activation of serine-632-IRS-1 phosphorylation in the gastrocnemius muscle of Zucker rats. The results show that the GTT in the OZRs was impaired. There was a significant decrease in IRS-1 levels, but no change was observed in IRβ in the gastrocnemius muscle of OZRs, compared to Zucker leans. Obese rats had a higher ratio of tyrosine phosphorylation of IRS-1 and IRβ than lean rats. In obese rats, however, insulin was unable to induce tyrosine phosphorylation. Moreover, insulin increased the phosphorylation of serine 632-IRS-1 in the gastrocnemius muscle of lean rats. However, obese rats had a low basal level of serine-632-IRS-1 and insulin only mildly increased serine phosphorylation in obese rats, compared to those without insulin. Thus, we addressed the altered steps of the insulin receptor signal transduction in the gastrocnemius muscle of OZRs. These findings may contribute to a better understanding of human obesity and type 2 diabetes.  相似文献   

3.
A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.  相似文献   

4.
Most human cells utilize glucose as the primary substrate, cellular uptake requiring insulin. Insulin signaling is therefore critical for these tissues. However, decrease in insulin sensitivity due to the disruption of various molecular pathways causes insulin resistance (IR). IR underpins many metabolic disorders such as type 2 diabetes and metabolic syndrome, impairments in insulin signaling disrupting entry of glucose into the adipocytes, and skeletal muscle cells. Although the exact underlying cause of IR has not been fully elucidated, a number of major mechanisms, including oxidative stress, inflammation, insulin receptor mutations, endoplasmic reticulum stress, and mitochondrial dysfunction have been suggested. In this review, we consider the role these cellular mechanisms play in the development of IR.  相似文献   

5.
It has been suggested that insulin signaling mutations of Drosophila melanogaster are sterile and long-lived because of juvenile hormone (JH) and ecdysteroid deficiency. However, female sterility of an insulin/IGF-like signaling mutant (chico(1)) of D. melanogaster is not mediated by downstream systemic signaling in terms of major alterations in JH or ecdysteroid levels. chico(1) is a null mutation in the insulin substrate protein (CHICO) gene of D. melanogaster. Homozygous chico(1) females are sterile and their oocytes do not mature beyond the last previtellogenic stage. Homozygous chico(1) females exhibit approximately wild-type rates of JH biosynthesis, ovarian release of ecdysteroids and haemolymph ecdysteroid levels, suggesting that these two major hormone systems play no role in producing the sterility. Previtellogenic wild-type ovaries transplanted into homozygous chico(1) females underwent vitellogenesis, showing that systemic factors present in mutant females are sufficient to support normal vitellogenesis. chico(1) ovaries transplanted into wild-type females did not undergo vitellogenesis indicating that CHICO is necessary in the ovary for vitellogenic maturation. The ovary transplant experiments corroborate the endocrine results and demonstrate that insulin/insulin-like signaling (IIS) is necessary for vitellogenesis even when sufficient levels of JH, ecdysteroids or other factors are present.  相似文献   

6.
7.
We have compared the insulin-like activity of bis(acetylacetonato)oxovanadium(IV) [VO(acac)2], bis(maltolato)oxovanadium(IV) [VO(malto)2], and bis(1-N-oxide-pyridine-2-thiolato)oxovanadium(IV) [VO(OPT)2] in differentiated 3T3-L1 adipocytes. The insulin-like influence of VO(malto)2 and VO(OPT)2 was decreased compared with that of VO(acac)2. Also, serum albumin enhanced the insulin-like activity of all three chelates more than serum transferrin. Each of the three VO2+ chelates increased the tyrosine phosphorylation of proteins in response to insulin, including the β-subunit of the insulin receptor (IRβ) and the insulin receptor substrate-1 (IRS1). However, VO(acac)2 exhibited the greatest synergism with insulin and was therefore further investigated. Treatment of 3T3-L1 adipocytes with 0.25 mM VO(acac)2 in the presence of 0.25 mM serum albumin synergistically increased glycogen accumulation stimulated by 0.1 and 1 nM insulin, and increased the phosphorylation of IRβ, IRS1, protein kinase B, and glycogen synthase kinase-3β. Wortmannin suppressed all of these classical insulin-signaling activities exerted by VO(acac)2 or insulin, except for tyrosine phosphorylation of IRβ and IRS1. Additionally, VO(acac)2 enhanced insulin signaling and metabolic action in insulin-resistant 3T3-L1 adipocytes. Cumulatively, these results provide evidence that VO(acac)2 exerts its insulin-enhancing properties by directly potentiating the tyrosine phosphorylation of the insulin receptor, resulting in the initiation of insulin metabolic signaling cascades in 3T3-L1 adipocytes.  相似文献   

8.
9.
10.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

11.
The recently identified 53-kDa substrate of the insulin receptor family was further characterized in several retroviral-generated stable cell lines overexpressing the wild type and various mutant forms of the protein. To facilitate the study of its subcellular localization in NIH3T3 cells overexpressing insulin receptor, a myc epitope-tag was added to the carboxy terminus of the 53-kDa protein. Like the endogenous protein in Chinese hamster ovary cells, the expressed myc-tagged 53-kDa protein was found partially in the particulate fraction and was tyrosine phosphorylated in insulin-stimulated cells. Immunofluorescence studies showed for the first time that a fraction of the 53-kDa protein was localized to the plasma membrane. Confocal microscopy of cells double-labeled with antibodies to the insulin receptor and the myc epitope showed the two proteins co-localize at the plasma membrane at the level of light microscopy. Further analyses of the protein sequence of the 53-kDa substrate revealed the presence of a putative SH3 domain and two proline-rich regions, putative binding sites for SH3 and WW domains. Disruption of these three motifs by the introduction of previously characterized point mutations did not affect the membrane localization of the 53-kDa protein, its ability to serve as substrate of the insulin receptor, or its colocalization with the insulin receptor, suggesting these domains are not important in the subcellular targeting of the protein and instead may function in the interaction with subsequent signaling proteins. J. Cell. Biochem. 68:139–150, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

14.
PHIP是一种与胰腺β细胞中胰岛素受体底物(IRS)的PH结构域相互作用的蛋白。根据小鼠PHIP(mPHIP)mRNA翻译的不同起始位点,除全长的PHIP1外,mPHIP基因还编码其他3种不同变异体。在胰岛素诱导的信号途径中,主要分布于细胞核的PHIP1和IRS-1的PH结构域相互作用,介导IRS蛋白酪氨酸的磷酸化。IRS-2和PHIP1的共表达能诱导IRS在细胞膜上的定位,促进葡萄糖转运蛋白4(GLUT4)向细胞质膜的转移。PHIP1的表达能提高β-细胞内细胞周期蛋白D2的表达,促进β细胞的生长。PHIP1的表达活化蛋白激酶B(PKB),活化的PKB能明显抑制β细胞的凋亡。PHIP与胰岛素信号传导途径中其他信号分子的相互作用机制尚不明确。  相似文献   

15.
We immunized mice with insulin and found that those strains that develop insulin antibodies subsequently produce insulin-like activity in amount equivalent to 300–400 ng insulin per ml serum. The activity was due exclusively to IgG2 antibodies. Bioactivity could be blocked efficiently by insulin antibodies from guinea pigs and from mice. The active IgG2 also displaced labeled insulin from fat cells. Preliminary in vivo studies have indicated that the appearance of insulin-like antibodies in the mouse resulted in abnormal glucose homeostasis and “down regulation” of insulin receptors. These results indicate that immunization to insulin can initiate an idiotype-anti-idiotype network resulting in antibodies to the hormone receptor.  相似文献   

16.
17.
18.
The acoustic membrane micro particle (AMMP) technology has been used to quantify single analytes out of multiple sample types. In this study the technology is used to reveal molecular interactions of components of kinase pathways. Specifically, the downstream kinase activity of the EGFR receptor in the presence or absence of EGFR inhibitors is investigated. These experiments substantiate that EGFR stimulation predominantly activates the MEK/ERK pathway. The EGFR inhibitors tested had varying effectiveness at preventing phosphorylation at the EGFR or downstream kinase activity. These experiments reveal the use of the AMMP technology for observing multiple signaling pathways in a single experiment.  相似文献   

19.
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号