共查询到20条相似文献,搜索用时 15 毫秒
1.
The juvenile onset form of neuronal ceroid lipofuscinoses (JNCL) is a recessively inherited lysosomal storage disorder characterized by progressive neurodegeneration. JNCL results from mutations in the CLN3 gene that encodes a lysosomal membrane protein with unknown function. Utilizing a Cln3-knock-out mouse model of JNCL that was created on the 129S6/SvEv genetic background, we have previously demonstrated that CLN3-deficient cerebellar granule cells (CGCs) have a selectively increased sensitivity to AMPA-type glutamate receptor-mediated toxicity. Our recent findings that CGCs from 129S6/SvEv and C57BL/6J wild type (WT) mice have significant differences in glutamate receptor expression and in excitotoxic vulnerability indicated that the genetic background possibly have a strong influence on how glutamate receptor function is dysregulated in CLN3-deficient neurons. Indeed, here we show that in the Cln3(Δex7/8)-knock-in mouse model, that is on the C57BL/6J genetic background, mimics the most frequent mutation observed in JNCL patients and considered a null mutant, the sensitivity of CGCs to both AMPA- and NMDA-type glutamate receptor overactivations is altered. Cultured wild type and Cln3(Δex7/8) CGCs were equally sensitive to AMPA toxicity after 2 or 3 weeks in vitro, whereas the subunit-selective AMPA receptor agonist, CPW-399, induced significantly more cell death in mature, 3-week-old Cln3(Δex7/8) cultures. NMDA receptor-mediated toxicity changed during in vitro development: Cln3(Δex7/8) CGCs were less sensitive to high concentration of NMDA after 2 weeks in culture but became more vulnerable than their WT counterparts after 3 weeks in vitro. Abnormally altered glutamate receptor function in the cerebellum may result in motor deficits, and we confirmed that 7-week-old Cln3(Δex7/8) mice, similarly to Cln3-knock-out mice, have a motor coordination deficit as measured by an accelerating rotarod. Our results demonstrate altered glutamate receptor function in Cln3(Δex7/8) neurons and suggest that both AMPA and NMDA receptors are potential therapeutic targets in JNCL. 相似文献
2.
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a ‘clean’ fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system. 相似文献
3.
4.
Otilija Keta Tanja Bulat Igor Golić Sebastien Incerti Aleksandra Korać Ivan Petrović Aleksandra Ristić-Fira 《Cell biology and toxicology》2016,32(2):83-101
In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma. 相似文献
5.
《生物化学与生物物理学报:疾病的分子基础》2014,1842(9):1454-1463
Diabetic retinopathy, a leading cause of vision loss in working-age population, is often associated with inflammation and apoptosis. We have previously reported that sitagliptin, a DPP-IV inhibitor, exerts beneficial effects in the retina of type 2 diabetic animals. The present study aimed to evaluate whether sitagliptin can exert protective effects in the retina of type 1 diabetic animals by a mechanism independent of insulin secretion and glycemia normalization.Streptozotocin-induced diabetic rats were treated orally with sitagliptin (5 mg/kg/day) for the last two weeks of 4 weeks of diabetes. Sitagliptin treatment did not change the weight and glucose, HbA1c or insulin levels. However, it prevented the diabetes-induced increase in DPP-IV/CD26 activity and levels in serum and retina. Sitagliptin also prevented the increase in blood–retinal barrier (BRB) permeability and inhibited the changes in immunoreactivity and endothelial subcellular distribution of occludin, claudin-5 and ZO-1 proteins induced by diabetes. Furthermore, sitagliptin decreased the retinal inflammatory state and neuronal apoptosis.Sitagliptin inhibited the BRB breakdown in a type 1 diabetic animal model, by a mechanism independent of normalization of glycemia, by preventing changes in tight junctions (TJs) organization. Sitagliptin also exerted protective effects against inflammation and pro-apoptotic state in the retina of diabetic rats. Altogether, these results suggest that sitagliptin might be envisaged to be used to prevent or delay some of the alterations associated with the development of diabetic retinopathy. 相似文献
6.
7.
8.
Linarin, a natural occurring flavanol glycoside derived from Mentha arvensis and Buddleja davidii is known to have anti-acetylcholinesterase effects. The present study intended to explore the neuroprotective effects of linarin against Aβ(25-35)-induced neurotoxicity with cultured rat pheochromocytoma cells (PC12 cells) and the possible mechanisms involved. For this purpose, PC12 cells were cultured and exposed to 30 μM Aβ(25-35) in the absence or presence of linarin (0.1, 1.0 and 10 μM). In addition, the potential contribution of the PI3K/Akt neuroprotective pathway in linarin-mediated protection against Aβ(25-35)-induced neurotoxicity was also investigated. The results showed that linarin dose-dependently increased cell viability and reduced the number of apoptotic cells as measured by MTT assay, Annexin-V/PI staining, JC-1 staining and caspase-3 activity assay. Linarin could also inhibit acetylcholinesterase activity induced by Aβ(25-35) in PC12 cells. Further study revealed that linarin induced the phosphorylation of Akt dose-dependently. Treatment of PC12 cells with the PI3K inhibitor LY294002 attenuated the protective effects of linarin. Furthermore, linarin also stimulated phosphorylation of glycogen synthase kinase-3β (GSK-3β), a downstream target of PI3K/Akt. Moreover, the expression of the anti-apoptotic protein Bcl-2 was also increased by linarin treatment. These results suggest that linarin prevents Aβ(25-35)-induced neurotoxicity through the activation of PI3K/Akt, which subsequently inhibits GSK-3β and up-regulates Bcl-2. These findings raise the possibility that linarin may be a potent therapeutic compound against Alzheimer's disease acting through both acetylcholinesterase inhibition and neuroprotection. 相似文献
9.
Arun Kannan Weishan Huang Fei Huang Avery August 《The international journal of biochemistry & cell biology》2012,44(12):2129-2134
T cells play an indispensable role in immune defense against infectious agents, but can also be pathogenic. These T cells develop in the thymus, are exported into the periphery as naïve cells and participate in immune responses. Upon recognition of antigen, they are activated and differentiate into effector and memory T cells. While effector T cells carry out the function of the immune response, memory T cells can last up to the life time of the individual, and are activated by subsequent antigenic exposure. Throughout this life cycle, the T cell uses the same receptor for antigen, the T cell Receptor, a complex multi-subunit receptor. Recognition of antigen presented by peptide/MHC complexes on antigen presenting cells unleashes signaling pathways that control T cell activation at each stage. In this review, we discuss the signals regulated by the T cell receptor in naïve and effector/memory T cells. 相似文献
10.
Effect of interferon-γ on the susceptibility to Fas (CD95/APO-1)-mediated cell death in human hepatoma cells 总被引:9,自引:0,他引:9
Shin EC Shin WC Choi Y Kim H Park JH Kim SJ 《Cancer immunology, immunotherapy : CII》2001,50(1):23-30
Many tumors, including hepatocellular carcinomas (HCCs), resist Fas-mediated cell death, which is one of the effector mechanisms
in the host's anti-tumor response; however, this resistance can be abolished by interferon-γ (IFN-γ). IFN-γ may sensitize
Fas-mediated cell death in several ways, but the exact mechanism in HCCs is uncertain. In this study, we thoroughly investigated
the effect of IFN-γ on the susceptibility of one human normal liver cell line and 12 HCC cell lines to Fas-mediated cell death.
We also investigated the effect of IFN-γ on the expression of various apoptosis-related genes such as the Fas/TNF-related
genes, the bcl-2 family, and the caspase family of genes. Although most cell lines showed considerable constitutive expression of Fas, all
tested cell lines resisted Fas-mediated cell death without IFN-γ. When cells were pretreated with IFN-γ, only three cell lines
were made significantly susceptible to Fas-mediated cell death (SNU-354, SNU-387 and SNU-423); the other 10 cell lines were
not affected. IFN-γ increased the mRNA expression of Fas, TRAIL and caspase-1, and surface Fas was also increased. The strongly
sensitized cell lines (SNU-354, SNU-387 and SNU-423) showed a particularly potent increment in surface Fas after IFN-γ treatment
(increase in surface Fas >1.7-fold). This result enabled us to conclude that a potent increment of surface Fas expression
is a major sensitizing mechanism of IFN-γ. We conclude that IFN-γ cannot play a sensitizing role in most HCC cell lines and
that IFN-γ makes HCC cells susceptible to Fas-mediated cell death through a marked up-regulation of surface Fas in some HCC
cells.
Received: 3 August 2000 / Accepted: 24 November 2000 相似文献
11.
Chan-Jung Liang Shu-Huei Wang Yung-Hsiang ChenShih-Sheng Chang Tong-Long HwangYann-Lii Leu Ying-Chih TsengChi-Yuan Li Yuh-Lien Chen 《Free radical biology & medicine》2011,51(7):1337-1346
Viscolin, a major active component in a chloroform extract of Viscum coloratum, has antioxidative and anti-inflammatory properties. We focused on its effects on the expression of vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α)-treated human umbilical vein endothelial cells (HUVECs). The TNF-α-induced expression of VCAM-1 was significantly reduced by respectively 38 ± 7 or 34 ± 16% when HUVECs were pretreated with 10 or 30 μM viscolin, as shown by Western blotting, and was also significantly reduced by pretreatment with the antioxidants N-acetylcysteine, diphenylene iodonium chloride, and apocynin. Viscolin also reduced TNF-α-induced VCAM-1 mRNA expression and promoter activity, decreased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and significantly reduced the binding of monocytes to TNF-α-stimulated HUVECs. The attenuation of TNF-α-induced VCAM-1 expression and cell adhesion was partly mediated by a decrease in JNK phosphorylation. Furthermore, viscolin reduced VCAM-1 expression in the aorta of TNF-α-treated mice in vivo. Taken together, these data show that viscolin inhibits TNF-α-induced JNK phosphorylation, nuclear translocation of NF-κB p65, and ROS generation and thereby suppresses VCAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that viscolin may prevent the development of atherosclerosis and inflammatory responses. 相似文献
12.
Lei Li Wei Peng Qian Zhou Ji-Peng Wan Xie-Tong Wang Hong-Bo Qi 《Journal of cellular biochemistry》2020,121(2):1599-1609
Pre-eclampsia is a common complication during pregnancy; however, the underlying mechanisms of the crosstalk between low-density lipoprotein receptor-related protein 6 (LRP6) and autophagy in trophoblast cells are still not fully explored. Messenger RNA (mRNA) and protein levels of LRP6, beclin 1, Unc-51-like autophagy activating kinase 1 (ULK1), p62, vimentin, matrix metallopeptidase-9 (MMP-9), β-catenin, c-Myc, and Rab7, as well as the ratio of LC3-II/LC3-I, were analysed by quantitative real-time polymerase chain reaction or Western blot analysis, respectively. An MTT assay was used to measure cell growth, and transwell and wound healing assays were carried out to evaluate the invasion and migration abilities of the trophoblasts used. An immunofluorescence assay was used to measure LC3. The mRFP-GFP-LC3 tandem fluorescence assay was applied to detect autophagic flow. LRP6 overexpression was achieved by constructing pcDNA3.1-LRP6 vectors. LRP6 was expressed at low levels in HTR-8/SVneo cells under hypoxia/reoxygenation (H/R) conditions. H/R inhibited the activation of autophagy. LRP6 overexpression promoted cell proliferation and activated autophagy, which led to the upregulation of beclin 1 and ULK1, as well as the ratio of LC3-II/LC3-I and the downregulation of p62. Furthermore, LRP6 overexpression elevated the migration and invasion abilities of the indicated cells and increased vimentin and MMP-9 expression levels. Furthermore, LRP6 upregulated Rab7 and activated autophagy through the Wnt/β-catenin pathway. The late autophagy inhibitor bafilomycin A1 (Baf-A1) and the Wnt/β-catenin pathway inhibitor PKF115-584 reversed the effects of LRP6 on trophoblast autophagy, migration and invasion. LRP6 promotes Rab7-mediated autophagy by activating the Wnt/β-catenin pathway, which leads to increasing migration and invasion of trophoblast cells. Our study paves a new avenue for clinical treatment, and LRP6 may serve as an essential target in pre-eclampsia. 相似文献
13.
14.
15.
Coker-Gurkan Ajda Can Esin Sahin Semanur Obakan-Yerlikaya Pınar Arisan Elif-Damla 《Molecular biology reports》2021,48(6):5233-5247
Molecular Biology Reports - The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth and invasion-metastasis. Atiprimod impacts anti-proliferative,... 相似文献
16.
Hang Tong Hubin Yin Mohammad Arman Hossain Yiyang Wang Feixiang Wu Xiaoyong Dong Shun Gao Kai Zhan Weiyang He 《Journal of cellular biochemistry》2019,120(4):5118-5127
The biological characteristics of bladder cancer include enhanced invasion and migration, which are the main causes of death in patients. Starvation is a typical feature of the bladder cancer microenvironment and can induce autophagy. Autophagy has an important relationship with the invasion and migration of tumors. However, the role of autophagy in the invasion and migration of bladder cancer cells remains unclear. Hence, the aim of the current study was to clarify this role and underlying mechanism. In this study, we found that starvation enhanced the epithelial-mesenchymal transition (EMT)-mediated invasion and migration of T24 and 5637 cells while inducing autophagy. The inhibition of autophagy with chloroquine (CQ) or 3-methyladenine (3MA) decreased EMT-mediated invasion and migration. In addition, the expression of transforming growth factor 1 (TGF-β1) and phosphorylated Smad3 (p-Smad3) increased after starvation. The inhibition of autophagy with CQ or 3MA also decreased the expression of TGF-β1 and p-Smad3. The inhibitor of TGF-β receptor sb431542 also inhibited the invasion, migration, and EMT of T24 and 5637 cells during starvation. Furthermore, recombinant TGF-β1 induced autophagy and inhibition of the TGF-β/Smad signaling pathway with sb431542 suppressed autophagy. In summary, our results suggested that autophagy promotes the invasion and migration of bladder cancer cells by inducing EMT through the TGF-β1/Smad3 signaling pathway. Moreover, autophagy and TGF-β1 can form a positive feedback loop to synergistically promote invasion and migration. Thus, our findings may provide a theoretical basis for the prevention of invasion and migration in bladder cancer. 相似文献
17.
《Translational oncology》2022,15(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis. 相似文献
18.
《Translational oncology》2021,14(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis. 相似文献
19.
K L Simpson C Cawthorne C Zhou C L Hodgkinson M J Walker F Trapani M Kadirvel G Brown M J Dawson M MacFarlane K J Williams A D Whetton C Dive 《Cell death & disease》2013,4(5):e613
Novel anticancer drugs targeting key apoptosis regulators have been developed and are undergoing clinical trials. Pharmacodynamic biomarkers to define the optimum dose of drug that provokes tumor apoptosis are in demand; acquisition of longitudinal tumor biopsies is a significant challenge and minimally invasive biomarkers are required. Considering this, we have developed and validated a preclinical ‘death-switch'' model for the discovery of secreted biomarkers of tumour apoptosis using in vitro proteomics and in vivo evaluation of the novel imaging probe [18F]ML-10 for non-invasive detection of apoptosis using positron emission tomography (PET). The ‘death-switch'' is a constitutively active mutant caspase-3 that is robustly induced by doxycycline to drive synchronous apoptosis in human colorectal cancer cells in vitro or grown as tumor xenografts. Death-switch induction caused caspase-dependent apoptosis between 3 and 24 hours in vitro and regression of ‘death-switched'' xenografts occurred within 24 h correlating with the percentage of apoptotic cells in tumor and levels of an established cell death biomarker (cleaved cytokeratin-18) in the blood. We sought to define secreted biomarkers of tumor apoptosis from cultured cells using Discovery Isobaric Tag proteomics, which may provide candidates to validate in blood. Early after caspase-3 activation, levels of normally secreted proteins were decreased (e.g. Gelsolin and Midkine) and proteins including CD44 and High Mobility Group protein B1 (HMGB1) that were released into cell culture media in vitro were also identified in the bloodstream of mice bearing death-switched tumors. We also exemplify the utility of the death-switch model for the validation of apoptotic imaging probes using [18F]ML-10, a PET tracer currently in clinical trials. Results showed increased tracer uptake of [18F]ML-10 in tumours undergoing apoptosis, compared with matched tumour controls imaged in the same animal. Overall, the death-switch model represents a robust and versatile tool for the discovery and validation of apoptosis biomarkers. 相似文献