首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pennell ML  Dunson DB 《Biometrics》2006,62(4):1044-1052
Many biomedical studies collect data on times of occurrence for a health event that can occur repeatedly, such as infection, hospitalization, recurrence of disease, or tumor onset. To analyze such data, it is necessary to account for within-subject dependency in the multiple event times. Motivated by data from studies of palpable tumors, this article proposes a dynamic frailty model and Bayesian semiparametric approach to inference. The widely used shared frailty proportional hazards model is generalized to allow subject-specific frailties to change dynamically with age while also accommodating nonproportional hazards. Parametric assumptions on the frailty distribution are avoided by using Dirichlet process priors for a shared frailty and for multiplicative innovations on this frailty. By centering the semiparametric model on a conditionally conjugate dynamic gamma model, we facilitate posterior computation and lack-of-fit assessments of the parametric model. Our proposed method is demonstrated using data from a cancer chemoprevention study.  相似文献   

2.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

3.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

4.
An accelerated failure time (AFT) model assuming a log-linear relationship between failure time and a set of covariates can be either parametric or semiparametric, depending on the distributional assumption for the error term. Both classes of AFT models have been popular in the analysis of censored failure time data. The semiparametric AFT model is more flexible and robust to departures from the distributional assumption than its parametric counterpart. However, the semiparametric AFT model is subject to producing biased results for estimating any quantities involving an intercept. Estimating an intercept requires a separate procedure. Moreover, a consistent estimation of the intercept requires stringent conditions. Thus, essential quantities such as mean failure times might not be reliably estimated using semiparametric AFT models, which can be naturally done in the framework of parametric AFT models. Meanwhile, parametric AFT models can be severely impaired by misspecifications. To overcome this, we propose a new type of the AFT model using a nonparametric Gaussian-scale mixture distribution. We also provide feasible algorithms to estimate the parameters and mixing distribution. The finite sample properties of the proposed estimators are investigated via an extensive stimulation study. The proposed estimators are illustrated using a real dataset.  相似文献   

5.
Yan J  Huang J 《Biometrics》2009,65(2):431-440
Summary .  Marginal mean models of temporal processes in event time data analysis are gaining more attention for their milder assumptions than the traditional intensity models. Recent work on fully functional temporal process regression (TPR) offers great flexibility by allowing all the regression coefficients to be nonparametrically time varying. The existing estimation procedure, however, prevents successive goodness-of-fit test for covariate coefficients in comparing a sequence of nested models. This article proposes a partly functional TPR model in the line of marginal mean models. Some covariate effects are time independent while others are completely unspecified in time. This class of models is very rich, including the fully functional model and the semiparametric model as special cases. To estimate the parameters, we propose semiparametric profile estimating equations, which are solved via an iterative algorithm, starting at a consistent estimate from a fully functional model in the existing work. No smoothing is needed, in contrast to other varying-coefficient methods. The weak convergence of the resultant estimators are developed using the empirical process theory. Successive tests of time-varying effects and backward model selection procedure can then be carried out. The practical usefulness of the methodology is demonstrated through a simulation study and a real example of recurrent exacerbation among cystic fibrosis patients.  相似文献   

6.
Summary In this article, we propose a family of semiparametric transformation models with time‐varying coefficients for recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are established. In addition, a lack‐of‐fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite‐sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

7.
We consider the estimation of a nonparametric smooth function of some event time in a semiparametric mixed effects model from repeatedly measured data when the event time is subject to right censoring. The within-subject correlation is captured by both cross-sectional and time-dependent random effects, where the latter is modeled by a nonhomogeneous Ornstein–Uhlenbeck stochastic process. When the censoring probability depends on other variables in the model, which often happens in practice, the event time data are not missing completely at random. Hence, the complete case analysis by eliminating all the censored observations may yield biased estimates of the regression parameters including the smooth function of the event time, and is less efficient. To remedy, we derive the likelihood function for the observed data by modeling the event time distribution given other covariates. We propose a two-stage pseudo-likelihood approach for the estimation of model parameters by first plugging an estimator of the conditional event time distribution into the likelihood and then maximizing the resulting pseudo-likelihood function. Empirical evaluation shows that the proposed method yields negligible biases while significantly reduces the estimation variability. This research is motivated by the project of hormone profile estimation around age at the final menstrual period for the cohort of women in the Michigan Bone Health and Metabolism Study.  相似文献   

8.
There is a great deal of recent interests in modeling right‐censored clustered survival time data with a possible fraction of cured subjects who are nonsusceptible to the event of interest using marginal mixture cure models. In this paper, we consider a semiparametric marginal mixture cure model for such data and propose to extend an existing generalized estimating equation approach by a new unbiased estimating equation for the regression parameters in the latency part of the model. The large sample properties of the regression effect estimators in both incidence and the latency parts are established. The finite sample properties of the estimators are studied in simulation studies. The proposed method is illustrated with a bone marrow transplantation data and a tonsil cancer data.  相似文献   

9.
Chen Q  Ibrahim JG 《Biometrics》2006,62(1):177-184
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a sensitivity analysis for model misspecification of the missing covariate distribution and/or missing data mechanism. The semiparametric model consists of a generalized additive model (GAM) for the covariate distribution and/or missing data mechanism. Penalized regression splines are used to express the GAMs as a generalized linear mixed effects model, in which the variance of the corresponding random effects provides an intuitive index for choosing between the semiparametric and parametric model. Maximum likelihood estimates are then obtained via the EM algorithm. Simulations are given to demonstrate the methodology, and a real data set from a melanoma cancer clinical trial is analyzed using the proposed methods.  相似文献   

10.
Summary We consider inference for data from a clinical trial of treatments for metastatic prostate cancer. Patients joined the trial with diverse prior treatment histories. The resulting heterogeneous patient population gives rise to challenging statistical inference problems when trying to predict time to progression on different treatment arms. Inference is further complicated by the need to include a longitudinal marker as a covariate. To address these challenges, we develop a semiparametric model for joint inference of longitudinal data and an event time. The proposed approach includes the possibility of cure for some patients. The event time distribution is based on a nonparametric Pólya tree prior. For the longitudinal data we assume a mixed effects model. Incorporating a regression on covariates in a nonparametric event time model in general, and for a Pólya tree model in particular, is a challenging problem. We exploit the fact that the covariate itself is a random variable. We achieve an implementation of the desired regression by factoring the joint model for the event time and the longitudinal outcome into a marginal model for the event time and a regression of the longitudinal outcomes on the event time, i.e., we implicitly model the desired regression by modeling the reverse conditional distribution.  相似文献   

11.
Sequentially observed survival times are of interest in many studies but there are difficulties in analyzing such data using nonparametric or semiparametric methods. First, when the duration of followup is limited and the times for a given individual are not independent, induced dependent censoring arises for the second and subsequent survival times. Non-identifiability of the marginal survival distributions for second and later times is another issue, since they are observable only if preceding survival times for an individual are uncensored. In addition, in some studies a significant proportion of individuals may never have the first event. Fully parametric models can deal with these features, but robustness is a concern. We introduce a new approach to address these issues. We model the joint distribution of the successive survival times by using copula functions, and provide semiparametric estimation procedures in which copula parameters are estimated without parametric assumptions on the marginal distributions. This provides more robust estimates and checks on the fit of parametric models. The methodology is applied to a motivating example involving relapse and survival following colon cancer treatment.  相似文献   

12.
Prospective accuracy for longitudinal markers   总被引:1,自引:0,他引:1  
Zheng Y  Heagerty PJ 《Biometrics》2007,63(2):332-341
In this article we focus on appropriate statistical methods for characterizing the prognostic value of a longitudinal clinical marker. Frequently it is possible to obtain repeated measurements. If the measurement has the ability to signify a pending change in the clinical status of a patient then the marker has the potential to guide key medical decisions. Heagerty, Lumley, and Pepe (2000, Biometrics 56, 337-344) proposed characterizing the diagnostic accuracy of a marker measured at baseline by calculating receiver operating characteristic curves for cumulative disease or death incidence by time t. They considered disease status as a function of time, D(t) = 1(Tor= 0, after the baseline time) can discriminate between people who become diseased and those who do not in a subsequent time interval [s, t]. We assume the disease status is derived from an observed event time T and thus interest is in individuals who transition from disease free to diseased. We seek methods that also allow the inclusion of prognostic covariates that permit patient-specific decision guidelines when forecasting a future change in health status. Our proposal is to use flexible semiparametric models to characterize the bivariate distribution of the event time and marker values at an arbitrary time s. We illustrate the new methods by analyzing a well-known data set from HIV research, the Multicenter AIDS Cohort Study data.  相似文献   

13.
Balshaw RF  Dean CB 《Biometrics》2002,58(2):324-331
In many longitudinal studies, interest focuses on the occurrence rate of some phenomenon for the subjects in the study. When the phenomenon is nonterminating and possibly recurring, the result is a recurrent-event data set. Examples include epileptic seizures and recurrent cancers. When the recurring event is detectable only by an expensive or invasive examination, only the number of events occurring between follow-up times may be available. This article presents a semiparametric model for such data, based on a multiplicative intensity model paired with a fully flexible nonparametric baseline intensity function. A random subject-specific effect is included in the intensity model to account for the overdispersion frequently displayed in count data. Estimators are determined from quasi-likelihood estimating functions. Because only first- and second-moment assumptions are required for quasi-likelihood, the method is more robust than those based on the specification of a full parametric likelihood. Consistency of the estimators depends only on the assumption of the proportional intensity model. The semiparametric estimators are shown to be highly efficient compared with the usual parametric estimators. As with semiparametric methods in survival analysis, the method provides useful diagnostics for specific parametric models, including a quasi-score statistic for testing specific baseline intensity functions. The techniques are used to analyze cancer recurrences and a pheromone-based mating disruption experiment in moths. A simulation study confirms that, for many practical situations, the estimators possess appropriate small-sample characteristics.  相似文献   

14.
A nonproportional hazards Weibull accelerated failure time regression model   总被引:1,自引:0,他引:1  
K M Anderson 《Biometrics》1991,47(1):281-288
We present a study of risk factors measured in mean before age 50 and subsequent incidence of heart disease over 32 years of follow-up. The data are from the Framingham Heart Study. The standard accelerated failure time model assumes the logarithm of time until an event has a constant dispersion parameter and a location parameter that is a linear function of covariates. Parameters are estimated by maximum likelihood. We reject a standard Weibull model for these data in favor of a model with the dispersion parameter depending on the location parameter. This model suggests that the cumulative hazard ratio for two individuals shrinks towards unity over the follow-up period. Thus, not only the standard Weibull, but also the semiparametric proportional hazards (Cox) model is inadequate for this data. The model improvement appears particularly valuable when estimating the difference in predicted outcome probabilities for two individuals.  相似文献   

15.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

16.
Clustered data frequently arise in biomedical studies, where observations, or subunits, measured within a cluster are associated. The cluster size is said to be informative, if the outcome variable is associated with the number of subunits in a cluster. In most existing work, the informative cluster size issue is handled by marginal approaches based on within-cluster resampling, or cluster-weighted generalized estimating equations. Although these approaches yield consistent estimation of the marginal models, they do not allow estimation of within-cluster associations and are generally inefficient. In this paper, we propose a semiparametric joint model for clustered interval-censored event time data with informative cluster size. We use a random effect to account for the association among event times of the same cluster as well as the association between event times and the cluster size. For estimation, we propose a sieve maximum likelihood approach and devise a computationally-efficient expectation-maximization algorithm for implementation. The estimators are shown to be strongly consistent, with the Euclidean components being asymptotically normal and achieving semiparametric efficiency. Extensive simulation studies are conducted to evaluate the finite-sample performance, efficiency and robustness of the proposed method. We also illustrate our method via application to a motivating periodontal disease dataset.  相似文献   

17.
Hogan JW  Lin X  Herman B 《Biometrics》2004,60(4):854-864
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.  相似文献   

18.
We present two tests for seasonal trend in monthly incidence data. The first approach uses a penalized likelihood to choose the number of harmonic terms to include in a parametric harmonic model (which includes time trends and autogression as well as seasonal harmonic terms) and then tests for seasonality using a parametric bootstrap test. The second approach uses a semiparametric regression model to test for seasonal trend. In the semiparametric model, the seasonal pattern is modeled nonparametrically, parametric terms are included for autoregressive effects and a linear time trend, and a parametric bootstrap test is used to test for seasonality. For both procedures, a null distribution is generated under a null Poisson model with time trends and autoregression parameters.We apply the methods to skin melanoma incidence rates collected by the surveillance, epidemiology, and end results (SEER) program of the National Cancer Institute, and perform simulation studies to evaluate the type I error rate and power for the two procedures. These simulations suggest that both procedures are alpha-level procedures. In addition, the harmonic model/bootstrap test had similar or larger power than the semiparametric model/bootstrap test for a wide range of alternatives, and the harmonic model/bootstrap test is much easier to implement. Thus, we recommend the harmonic model/bootstrap test for the analysis of seasonal incidence data.  相似文献   

19.
M C Wang  L C See 《Biometrics》1992,48(1):129-141
It is a common sampling scheme in retrospective studies that the data set includes only individuals who satisfy a certain sampling criterion. In this paper we consider the situation when the sampling criterion is a specified event, and assume that an earlier event can be retrospectively identified given the occurrence of the specified event. A semiparametric method, which is a compromise between nonparametric and parametric methods, is employed for the estimation of the expected number of the specified events (namely, the N-estimation) occurring in arbitrarily given intervals. A number of statistical properties of the estimates are developed. Due to the limitation of semiparametric models, our estimates should be regarded as conservative estimates since in general they underestimate the actual number of the specified events. This type of limitation, however, cannot be avoided with nonparametric or semiparametric models. Applications to acquired immunodeficiency syndrome (AIDS) cases are considered. The blood transfusion AIDS cases reported to the Centers for Disease Control are analyzed in detail.  相似文献   

20.
The sensitivity and specificity of markers for event times   总被引:1,自引:0,他引:1  
The statistical literature on assessing the accuracy of risk factors or disease markers as diagnostic tests deals almost exclusively with settings where the test, Y, is measured concurrently with disease status D. In practice, however, disease status may vary over time and there is often a time lag between when the marker is measured and the occurrence of disease. One example concerns the Framingham risk score (FR-score) as a marker for the future risk of cardiovascular events, events that occur after the score is ascertained. To evaluate such a marker, one needs to take the time lag into account since the predictive accuracy may be higher when the marker is measured closer to the time of disease occurrence. We therefore consider inference for sensitivity and specificity functions that are defined as functions of time. Semiparametric regression models are proposed. Data from a cohort study are used to estimate model parameters. One issue that arises in practice is that event times may be censored. In this research, we extend in several respects the work by Leisenring et al. (1997) that dealt only with parametric models for binary tests and uncensored data. We propose semiparametric models that accommodate continuous tests and censoring. Asymptotic distribution theory for parameter estimates is developed and procedures for making statistical inference are evaluated with simulation studies. We illustrate our methods with data from the Cardiovascular Health Study, relating the FR-score measured at enrollment to subsequent risk of cardiovascular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号