首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang B  Chen D  Chen Y  Hu Z  Cao M  Xie Q  Chen Y  Xu J  Zheng S  Li L 《Journal of proteome research》2012,11(2):1217-1227
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and usually develops in patients with liver cirrhosis (LC). Biomarkers that discriminate HCC from LC are important but are limited. In the present study, an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics approach was used to characterize serum profiles from HCC (n = 82), LC (n = 48), and healthy subjects (n = 90), and the accuracy of UPLC-MS profiles and alpha-fetoprotein (AFP) levels were compared for their use in HCC diagnosis. By multivariate data and receiver operating characteristic curves analysis, metabolic profiles were capable of discriminating not only patients from the controls but also HCC from LC with 100% sensitivity and specificity. Thirteen potential biomarkers were identified and suggested that there were significant disturbances of key metabolic pathways, such as organic acids, phospholipids, fatty acids, bile acids, and gut flora metabolism, in HCC patients. Canavaninosuccinate was first identified as a metabolite that exhibited a significant decrease in LC and an increase in HCC. In addition, glycochenodeoxycholic acid was suggested to be an important indicator for HCC diagnosis and disease prognosis. UPLC-MS signatures, alone or in combination with AFP levels, could be an efficient and convenient tool for early diagnosis and screening of HCC in high-risk populations.  相似文献   

2.
Wang X  Wang X  Xie G  Zhou M  Yu H  Lin Y  Du G  Luo G  Jia W  Liu P 《Journal of proteome research》2012,11(7):3838-3847
Cirrhosis is a common and terminal outcome of many chronic liver conditions. A urinary metabonomic study using gas chromatography-mass spectrometry (GC-MS) and ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS) was carried out to elucidate the pathophysiological basis of posthepatitis B cirrhosis in 63 posthepatitis B cirrhosis patients and 31 health controls. Urinary metabolic profile and corresponding differential metabolites associated with Child-Pugh (CP) grading of liver function were characterized, in addition to the blood routine, liver, and renal function tests. Multivariate statistical tools including principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA) were employed in the metabolite analysis along with a univariate statistical method, Wilcoxon-Mann-Whitney test. The alterations of differential metabolites contributing to the intergroup variation between healthy controls and cirrhotic patients, and among cirrhosis of CP grade A, B and C were also investigated. Six metabolites, α-hydroxyhippurate, tyrosine-betaxanthin, 3-hydroxyisovalerate, canavaninosuccinate, estrone, and glycoursodeoxycholate, were significantly altered among cirrhotic patients with CP A, B, and C, reflecting abnormal metabolism of amino acid, bile acids, hormones, and intestinal microbial metabolism. The results show that dynamic alteration of urinary metabolome, characterized by the changes of a panel of the differential metabolite markers, is indicative of an exacerbated liver function, highlighting their diagnostic and prognostic potential for the liver cirrhosis development.  相似文献   

3.
To improve the grading and staging of liver cirrhosis among patients with HBV infection noninvasively, a high-performance liquid chromatography with mass spectrometry metabolomics method was used to investigate the potential metabolic biomarkers in the serum of patients with different degrees of hepatic cirrhosis. The results demonstrate that lysophosphatidyl choline (LPC) from positive electrospray ionization (ESI) mode, and fatty acids and bile acids from negative ESI mode play important roles in distinguishing decompensated from compensated cirrhosis. A total of 21 differential metabolites were found from the two groups of patients. LPCs, fatty acids, and taurocholic acid (TCA) 3-sulfate decreased in patients with decompensated cirrhosis, whereas other bile acids increased significantly. The levels of TCA 3-sulfate, LPC 16:0, and LPC 18:0 were significantly correlated with the stages of the decompensated cirrhosis, and they may serve as potential biomarkers for the stage assessment of liver cirrhosis in patients with HBV infections.  相似文献   

4.
Chronic infection with hepatitis B virus (HBV) is associated with the majority of cases of hepatocellular carcinoma (HCC) in China. Despite this, there is no effective method for the early detection of HBV-induced liver cancer. Aberrant fucosylation is known to occur during the development of HCC. We, therefore, developed a method of applying matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the relationship between aberrant fucosylation, tumor genesis and progression of HBV-associated HCC, and to establish proteomic profiling of serum for early diagnosis of HCC. The MALDI-TOF MS was based on Lens culinaris agglutinin (LCA) lectin magnetic beads and their affinity for separation. The method was applied initially to a 'training' cohort of 111 serum samples obtained from subjects in China with no liver disease (n=26), chronic hepatitis B without cirrhosis (n=21), HBV-infected cirrhosis (n=32), or HBV-infected HCC (n=32). In contrast to previous findings, the results of our profiling analysis demonstrated defucosylation on some of the glycoproteins involved in HCC. HCC was then diagnostically classified in a 'blind test' cohort (n=96). In this group we demonstrated that, HCC could be distinguished from all serum samples, HBV-associated chronic liver disease, and HBV-associated cirrhosis with a sensitivity/specificity of 70%/70%, 78%/74%, and 81%/82%, respectively. When combined with serum alpha-fetoprotein detection (AFP>20 ng/mL), the sensitivity/specificity improved to 78%/88%, 85%/88%, and 89%/91%, respectively. In conclusion, serum glycoprotein fucosylation abnormalities have diverse forms in patients with HCC. MALDI-TOF MS profiling of aberrant serum fucosylated glycoproteins distinguished HCC from controls with high accuracy.  相似文献   

5.
The aim of this study is to find the potential biomarkers from the rat hepatocellular carcinoma (HCC) disease model by using a non-target metabolomics method, and test their usefulness in early human HCC diagnosis. The serum metabolic profiling of the diethylnitrosamine-induced rat HCC model, which presents a stepwise histopathological progression that is similar to human HCC, was performed using liquid chromatography-mass spectrometry. Multivariate data analysis methods were utilized to identify the potential biomarkers. Three metabolites, taurocholic acid, lysophosphoethanolamine 16:0, and lysophosphatidylcholine 22:5, were defined as "marker metabolites," which can be used to distinguish the different stages of chemical hepatocarcinogenesis. These metabolites represented the abnormal metabolism during the progress of hepatocarcinogenesis, which could also be found in patients. To test their diagnosis potential 412 sera from 262 patients with HCC, 76 patients with cirrhosis and 74 patients with chronic hepatitis B were collected and studied, it was found that 3 marker metabolites were effective for the discrimination of small liver tumor (solitary nodules of less than 2 cm in diameter) patients, achieved a sensitivity of 80.5% and a specificity of 80.1%,which is better than those of α-fetoprotein (53 and 64%, respectively). Moreover, they were also effective for the discrimination of all HCCs and chronic liver disease patients, which could achieve a sensitivity of 87.5% and a specificity of 72.3%, better than those of α-fetoprotein (61.2 and 64%). These results indicate metabolomics method has the potential of finding biomarkers for the early diagnosis of HCC.  相似文献   

6.
The advent of metabonomics has seen a proliferation of biofluid profiling studies of patients with hepatocellular carcinoma. The majority of these studies have been conducted in single indigenous populations making the widespread applicability of candidate metabolite biomarkers difficult. Presented here is a urinary proton nuclear magnetic resonance spectroscopy study of mainly hepatitis C virus infected Egyptian patients with hepatocellular carcinoma, which corroborates findings of a previous study from our group of mainly hepatitis B-infected Nigerian patients with hepatocellular carcinoma. Using multivariate statistical analysis, in the form of orthogonal signal-corrected partial least squared discriminant analysis, the sensitivity and specificity of the technique for distinguishing patients with tumors from healthy controls and patients with cirrhosis was 100%/94% and 81%/71%, respectively. Discriminatory metabolites included glycine, trimethylamine-N-oxide, hippurate, citrate, creatinine, creatine, and carnitine. This metabolic profile bears similarity to profiles identified in the Nigerian cohort of subjects indicative of tumor effects on physiology, energy production, and aberrant chromosomal methylation. This is the first study to identify similarly altered urine metabolic profiles of hepatocellular carcinoma in two etiologically and ethnically distinct populations, suggesting that altered metabolism as a result of tumorogenesis is independent of these two factors.  相似文献   

7.
In this study, (1)H NMR-based metabonomics has been applied to investigate esophageal cancer metabolic signatures in plasma and urine, purpose of assessing the diagnostic potential of this approach and gaining novel insights into esophageal cancer metabolism and systemic effects. Plasma and urine samples from esophageal cancer patients (n = 108) and a control healthy group (n = 40) were analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy (600 MHz), and their spectral profiles subjected to Orthogonal Projections to Latent Structures (OPLS-DA) for multivariate statistics. Potential metabolic biomarkers were identified using data base comparisons used for examining the significance of metabolites. Compared to healthy controls, esophageal cancer plasma had higher levels of dimethylamine, α-glucose, β-glucose, citric acid, together with lower levels of Leucine, alanine, isoleucine, valine, glycoprotein, lactate, acetone, acetate, choline, isobutyrate, unsaturated lipid, VLDL, LDL, 1-methylhistidine; Compared to healthy controls, esophageal cancer urine had higher levels of Mannitol, glutamate, γ-propalanine, phenylalanine, acetate, allantoin, pyruvate, tyrosine, β-glucose and guinolinate, together with lower levels of N-acetylcysteine, valine, dihydrothymine, hippurate, methylguanidine, 1-methylnicotin- amide and Citric acid; Very good discrimination between cancer and control groups was achieved by multivariate modeling of plasma and urinary profiles. (1)H NMR-based metabolite profiling analysis was shown to be an effective approach to differentiating between patients with EC and healthy subjects. Good sensitivity and selectivity were shown by using the metabolite markers discovered to predict the classification of samples from the healthy control group and the patients with the disease. Plasma and urine metabolic profiling may have potential for early diagnosis of EC and may enhance our understanding of its mechanisms.  相似文献   

8.
Zhang S  Shu H  Luo K  Kang X  Zhang Y  Lu H  Liu Y 《Molecular bioSystems》2011,7(5):1621-1628
Human haptoglobin is a serum glycoprotein secreted by the liver with four potential N-glycosylation sites on its β chain. Many studies have reported glycan changes of haptoglobin in diseases such as breast cancer and pancreatic cancer. The objective of our study is to analyze N-linked glycan alterations of serum haptoglobin β chain obtained from patients with the hepatitis B virus (HBV), liver cirrhosis (LC) and hepatocellular carcinoma (HCC). MALDI-QIT-TOF mass spectrometry revealed the intensity of m/z 1809.6, identified as a fucosylated glycan, was much higher in samples from patients with LC and HCC relative to the patients with HBV and healthy controls. Compared with LC patients, triantennary glycan was elevated and the biantennary structure was decreased in the haptoglobin β chain of HCC patients. Thus, alterations in the glycan structure of the haptoglobin β chain may constitute significant spectral signatures of cirrhosis and HCC disease.  相似文献   

9.
3 beta-Hydroxy-(delta 5-3 beta-ol), 3 beta,12 alpha-dihydroxy-(delta 5-3 beta,12 alpha-ol), 3 beta,7 alpha-dihydroxy-(delta 5-3 beta,7 alpha-ol) and 3 beta,7 beta-dihydroxy-(delta 5-3 beta,7 beta-ol) 5-cholenoic acids were identified in patients with liver diseases by gas-liquid chromatography-mass spectrometry (GLC-MS). Of these unusual 3 beta-hydroxy-5-en-metabolites, delta 5-3 beta-ol and delta 5-3 beta,12 alpha-ol were found as major components in the urine of patients with liver diseases (cholestasis, liver cirrhosis, chronic hepatitis, acute hepatitis). Other 3 beta-dihydroxy-5-en-metabolites, delta 5-3 beta,7 alpha-ol and delta 5-3 beta,7 beta-ol, were found as minor components in the urine. The levels of delta 5-3 beta-ol and delta 5-3 beta,12 alpha-ol in urine were correlated with their levels in serum, with total bile acids in the urine, and with liver function, implying that the degree of their increment correlated well with the severity of liver diseases. The most abundant amounts of delta 5-3 beta-ol and delta 5-3 beta,12 alpha-ol were found in the urine as sulfate conjugates in comparison with bile, portal and hepatic venous sera, and liver tissue of the patients. The biliary excretion and hepatic extraction of these 3 beta-hydroxy-5-en-unsaturated bile acids were more impaired and inefficient than those of cholic and chenodeoxycholic acids.  相似文献   

10.

Goals

In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC).

Background

Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined.

Methods

Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22) and of healthy volunteers (n = 15) served as controls.

Results

MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007) and healthy controls (p<0.002). MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC) values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy.

Conclusions

Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC.  相似文献   

11.
We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance liquid-chromatography mass spectrometry (HPLC-MS) and electrospray ionisation in the negative ionisation mode (ESI-). Detection is performed in full scan using the linear ion trap Fourier transform mass spectrometer (LTQ-FTMS) generating data for many (endogenous) metabolites, not only bile acids. A validation of the method in urine, plasma and liver was performed for 17 bile acids including their taurine, sulfate and glycine conjugates. The method is linear in the 0.01-1muM range. The accuracy in human plasma ranges from 74 to 113%, in human urine 77 to 104% and in mouse liver 79 to 140%. The precision ranges from 2 to 20% for pooled samples even in studies with large number of samples (n>250). The method was successfully applied to a multi-compartmental APOE*3-Leiden mouse study, the main goal of which was to analyze the effect of increasing dietary cholesterol concentrations on hepatic cholesterol homeostasis and bile acid synthesis. Serum and liver samples from different treatment groups were profiled with the new method. Statistically significant differences between the diet groups were observed regarding total as well as individual bile acid concentrations.  相似文献   

12.
OBJECTIVE: To determine whether tumor marker pi glutathione transferase (GST-pi) is expressed in hepatocellular carcinoma (HCC) and other chronic liver diseases and to compare its expression with that of alpha-fetoprotein (AFP). STUDY DESIGN: Samples used were formalin-fixed, paraffin-embedded liver tissues: normal (n = 3), chronic hepatitis B (n = 15), cirrhosis (n = 15) and HCC (n = 30). The expression of AFP and GST-pi was detected by using immunohistochemistry with the peroxidase-antiperoxidase method. AFP immunoreactivity was based on the cytoplasm of the hepatocytes, while GST-pi immunoreactivity was based on the nuclei of hepatocytes. RESULTS: In normal liver tissues, AFP was not expressed. However, there was strong staining of GST-pi in bile duct epithelium cells and weak staining in hepatocytes. Our results showed higher AFP immunoreactivity in cases of HCC (36.7%) as compared to cirrhosis (6.7%) and hepatitis B (0%), whereas GST-pi immunoreactivity was lower in cases of HCC (53.3%) as compared to cases of cirrhosis (100.0%) and hepatitis B (93.3%). Percent sensitivity of AFP determination for HCC was 36.7% as compared to 53.3% for GST-pi, thus making GST-pi a more sensitive marker for detection of HCC. This study showed a significant relationship between the intensity and percentage of cells stained in hepatitis B, cirrhosis and HCC for GST-pi immunoreactivity (P < .001, .001 and .05, respectively) but not for AFP (P > .05). Statistical analysis showed that there was no significant relationship between expression of AFP and GST-pi in cirrhosis and HCC cases. Hepatitis B virus infection in HCC cases showed a positive rate of 46.7%, with AFP staining positively in 42.9% of tissues and GST-pi staining positively in 57.1% of tissues. CONCLUSION: AFP is a diagnostic but rather insensitive tissue marker for HCC. However, the absence of AFP in benign chronic liver disease makes this marker useful in differentiating between HCC and other chronic liver diseases, whereas GST-pi can be used as a diagnostic marker for HCC as well as in detecting other chronic liver diseases.  相似文献   

13.
Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis progression to cirrhosis to HCC. We identified a panel of four serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.  相似文献   

14.
Urinary levels of sulfated metabolites of lithocholic acid (LCA) are expected to be a useful index of liver function. Thus, a sensitive, specific, and feasible enzyme-linked immunosorbent assay (ELISA) of these sulfated LCA metabolites (LCA-Suls) should be established. A newly generated monoclonal antibody specific to glycolithocholic acid sulfate (glycine-amidated LCA-Sul (GLCA-Sul)) was immobilized on microtiter plates via a second antibody. A urine specimen and an alkaline phosphatase-labeled antigen were added to the plate, which was then incubated at room temperature for 3h. After this competitive reaction, bound enzyme activity was measured colorimetrically using p-nitrophenyl phosphate as a substrate. The detection limit for GLCA-Sul was 0.4 pg/assay. Nonamidated LCA-Sul and taurine-conjugated LCA-Sul showed 40 and 11% cross-reactivities, respectively, while 3-sulfates of cholic acid (CA; 0.02%), chenodeoxycholic acid (CDCA; 0.63%), and deoxycholic acid (DCA; 2.2%) exhibited very low cross-reactivities. Applicability of the ELISA system to clinical samples was well validated by parallelism, recovery test, and intra/inter-assay variance. Enzymatic deconjugation with bile acids sulfatase resulted in dramatically decreased urinary levels, supporting the specificity of the ELISA toward GLCA-Sul. The mean GLCA-Sul levels in early morning urine from healthy volunteers were 314 ng/mg Ucre (males: n=16) and 507 ng/mg Ucre (females: n=9). Patients with liver diseases, including chronic hepatitis (CH) and liver cirrhosis (LC) exhibited significantly higher values (mean 5222 ng/mg Ucre: n=21). The present 'monoclonal ELISA' is predicted to be useful as a novel noninvasive diagnostic tool for liver function and hepatobiliary diseases.  相似文献   

15.
The purpose of this study was to use metabonomic profiling to identify a potential specific biomarker pattern in urine as a noninvasive bladder cancer (BC) detection strategy. A liquid chromatography-mass spectrometry based method, which utilized both reversed phase liquid chromatography and hydrophilic interaction chromatography separations, was performed, followed by multivariate data analysis to discriminate the global urine profiles of 27 BC patients and 32 healthy controls. Data from both columns were combined, and this combination proved to be effective and reliable for partial least squares-discriminant analysis. Following a critical selection criterion, several metabolites showing significant differences in expression levels were detected. Receiver operating characteristic analysis was used for the evaluation of potential biomarkers. Carnitine C9:1 and component I, were combined as a biomarker pattern, with a sensitivity and specificity up to 92.6% and 96.9%, respectively, for all patients and 90.5% and 96.9%, respectively for low-grade BC patients. Metabolic pathways of component I and carnitine C9:1 are discussed. These results indicate that metabonomics is a practicable tool for BC diagnosis given its high efficacy and economization. The combined biomarker pattern showed better performance than single metabolite in discriminating bladder cancer patients, especially low-grade BC patients, from healthy controls.  相似文献   

16.
Proteomic techniques are promising strategies in the surveillance of hepatocellular carcinoma (HCC). This study aimed to investigate the serum profiling with magnetic bead (MB) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and to further identify the biomarkers for HCC. Serum samples from 80 chronic hepatitis B (CHB) patients, 94 HCC concomitant with HBV patients and 24 healthy subjects were examined by MALDI-TOF MS after peptide enrichment on MBs. Based on the genetic algorithm, diagnostic models for HCC were established between 30 HCC patients and 24 healthy subjects/30 CHB patients. Validations were done with the remaining cases. Markers in the models were identified through liquid chromatography (LC)/MS-MS. The three groups were well separated from each other and two discrimination models were established for HCC. The overall recognition capability of these two models was 96.25% and 93.33%, respectively. Validations showed the misdiagnosis ratio for HCC was 1.6% and 23.4%, respectively. The identified biomarkers for HCC included prothrombin precursor (fragment), calcium-dependent secretion activator 1, Baculoviral inhibitor of apoptosis repeat-containing protein 6, etc. MB-based MALDI-TOF MS is applicable in identifying the serum biomarkers and can be used in the surveillance of HCC among HBV-infected patients.  相似文献   

17.
N Yamaga  K Adachi  K Shimizu  S Miyake  F Sumi  I Miyagawa  H Goto 《Steroids》1986,48(5-6):427-438
Bile acids in serum, urine and dialysate of 8 patients with renal failure in chronic hemodialysis were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following results were obtained: 1. Lithocholic acid, 3 beta-hydroxy-5-cholen-24-oic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and cholic acid were identified in hemodialysate as well as in serum and urine. 2. The serum bile acid concentration of the patients was 2.78 +/- 0.57 micrograms/mL before hemodialysis and 1.34 +/- 0.48 micrograms/mL after a 5-h period hemodialysis with cuprophane membrane. The proportions of secondary bile acids in predialysis and postdialysis serum of patients were significantly higher than those of healthy subjects. 3. Two out of 8 patients excreted urine. But the amounts of bile acids in urine of the patients were very small compared to those of healthy subjects. 4. The amount of bile acids removed from blood by hemodialysis was 0.70 +/- 0.25 mg. In dialysate, cholic acid constituted a larger proportion of the total bile acids, and lithocholic acid a smaller proportion, when compared to those in urine of patients and healthy subjects.  相似文献   

18.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

19.
Chronic hepatitis B (CHB) is a global epidemic disease that may progress to fibrosis, cirrhosis and hepatocellular carcinoma. The role of the liver‐bile acid‐microbiota axis in CHB remains unclear. The aims of this study are to elucidate the alteration of the gut microbiota and its functions in bile acid homeostasis in CHB patients with different degrees of fibrosis. In the present study, we evaluated serum and faecal bile acid profiles in healthy controls and CHB patients with biopsy‐proven diagnosis: patients had stage 0‐1 fibrosis were classified as mild CHB and patients had stage 2‐4 fibrosis were classified as moderate/advanced CHB. The levels of serum total bile acids (BAs) and primary BAs were increased in CHB patients with moderate/advanced fibrosis, whereas faecal total and secondary BAs levels were significantly lower. Analyses of gut microbiota exhibited a trend of decreased abundance in bacteria genera responsible for BA metabolism in CHB patients with moderate/advanced fibrosis. CHB is associated with altered bile acid pool which is linked with the dysregulated gut microbiota. The higher level of FGF‐19 may act in a negative feedback loop for maintaining the bile acid homeostasis.  相似文献   

20.
This study evaluates changes in metabolite levels in hepatocellular carcinoma (HCC) cases vs. patients with liver cirrhosis by analysis of human blood plasma using gas chromatography coupled with mass spectrometry (GC-MS). Untargeted metabolomic analysis of plasma samples from participants recruited in Egypt was performed using two GC-MS platforms: a GC coupled to single quadruple mass spectrometer (GC-qMS) and a GC coupled to a time-of-flight mass spectrometer (GC-TOFMS). Analytes that showed statistically significant changes in ion intensities were selected using ANOVA models. These analytes and other candidates selected from related studies were further evaluated by targeted analysis in plasma samples from the same participants as in the untargeted metabolomic analysis. The targeted analysis was performed using the GC-qMS in selected ion monitoring (SIM) mode. The method confirmed significant changes in the levels of glutamic acid, citric acid, lactic acid, valine, isoleucine, leucine, alpha tocopherol, cholesterol, and sorbose in HCC cases vs. patients with liver cirrhosis. Specifically, our findings indicate up-regulation of metabolites involved in branched-chain amino acid (BCAA) metabolism. Although BCAAs are increasingly used as a treatment for cancer cachexia, others have shown that BCAA supplementation caused significant enhancement of tumor growth via activation of mTOR/AKT pathway, which is consistent with our results that BCAAs are up-regulated in HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号